
1 Dots

The graphics objects

\psdot*[par](x1,y1)

\psdots*[par](x1,y1)(x2,y2)…(xn,yn)

put a dot at each coordinate.

What a “dot” is depends on the value of the

dotstyle=style Default: *

parameter. This also determines the dots you get when showpoints=true.

The dot styles are also pretty intuitive:

Style Example

* • • • • •

o

+ + + + + +

x × × × × ×

asterisk ∗ ∗ ∗ ∗ ∗

oplus ⊕ ⊕ ⊕ ⊕ ⊕

otimes ⊗ ⊗ ⊗ ⊗ ⊗

|

Style Example

square

square*

diamond ◊ ◊ ◊ ◊ ◊

diamond* ♦ ♦ ♦ ♦ ♦

triangle

triangle*

pentagon

pentagon*

Except for diamond, the center of dot styles with a hollow center is
colored fillcolor.

Here are the parameters for changing the size and orientation of the dots:

dotsize=dim ‘num’ Default: 2pt 2

The diameter of a circle or disc is dim plus num times linewidth

(if the optional num is included). The size of the other dots styles
is similar (except for the size of the |̈ dot style, which is set by the
tbarsize parameter described on page ??).

dotscale=num1 ‘num2’ Default: 1

The dots are scaled horizontally by num1 and vertically by num2.
If you only include num1, the arrows are scaled by num1 in both
directions.

1

dotangle=angle Default: 0

After setting the size and scaling the dots, the dots are rotated by
angle.

2 Arrowheads and such

New arrows:

Value Example Name

|<->| T-bars and arrowheads.

|<*->|* T-bars and arrowheads, flush.

The size of these line terminators is controlled by the following parame-
ters. In the description of the parameters, the width always refers to the
dimension perpendicular to the line, and length refers to a dimension in
the direction of the line.

arrowsize=dim ‘num’ Default: 1.5pt 2

The width of arrowheads is dim plus num times linewidth (if the
optional ‘num’ is inclued). See the diagram below.

arrowlength=num Default:
Length of arrowheads, as a fraction of the width, as shown below.

arrowinset=num Default:
Size of inset for arrowheads, as a fraction of the length, as shown
below.

length

width
inset

arrowsize = dim num

width = num x linewidth + dim1

length = arrowlength x width

inset = arrowinset x height

tbarsize=dim ‘num’ Default:
The width of a t-bar, square bracket or rounded bracket is dim
plus num times linewidth (if the optional ‘num’ is included).

bracketlength=num Default:
The height of a square bracket is num times its width.

Arrowheads and such 2

rbracketlength=num Default:
The height of a round bracket is num times its width.

arrowscale=arrowscale=num1 ‘num2’ Default:
Imagine that arrows and such point down. This scales the width
of the arrows by num1 and the length (height) by num2. If you
only include one number, the arrows are scaled the same in both
directions. Changing arrowscale can give you special effects not
possible by changing the parameters described above. E.g., you
can change the width of lines used to draw brackets.

The size of dots is controlled by the dotsize parameter.

3 Lines and polygons

\psdiamond*[par](x0,y0)(x1,y1)

\psdiamond draws a diamond centered at (x0,y0), and with the
half width and height equal to x1 and y1, respectively.

0 1 2 3 4
0

1

2

\psdiamond[framearc=.3,fillstyle=solid,

fillcolor=lightgray](2,1)(1.5,1)

The diamond is rotated about the center by

gangle=gangle Default: 0

\pstriangle*[par](x0,y0)(x1,y1)

\pstriangle draws an isosceles triangle with the base centered at
(x0,y0), and with width (base) and height equal to x1 and y1,
respectively.

0 1 2 3 4
0

1

2

\pstriangle*[gangle=10](2,.5)(4,1)

Lines and polygons 3

4 Framed boxes

\psdiabox*[par]{stuff }

\psdiabox draws a diamond.

Happy? \psdiabox[shadow=true]{\Large\bf Happy?}

\pstribox*[par]{stuff}

\pstribox draws a triangle.

Begin \pstribox[trimode=R,framesep=5pt]{\Large\bf Begin}

The triangle points in the direction:

trimode=*U/D/R/L Default: U

If you include the optional *, then an equilateral triangle is drawn,
otherwise, you get the minimum-area isosceles triangle.

Begin
\pstribox[trimode=*U]{\Huge Begin}

5 Obsolete put commands

There is an obsolete command \Rput that has the same syntax as \uput
and that works almost the same way, except the refangle argument has
the syntax of \rput’s refpoint argument, and it gives the point in stuff that
should be aligned with (x,y). E.g.,

\qdisk(4,0){2pt}
(x; y)\Rput[tl](4,0){(x,y)}

Here is the equivalence between \uput’s refangle abbreviations and
\Rput’s refpoint abbreviations:

Framed boxes 4

\uput r u l d ur ul dr dl

\Rput l b r t bl br tr rl

Some people prefer \Rput’s convention for specifying the position of
stuff over \uput’s.

Once upon a time there was \psput instead of \nput. This feature is still
supported for backwards compatibility.

Obsolete put commands 5

I Nodes and Node Connections

All the commands described in this part are contained in the file pst-
pst-node node.tex/pst-node.sty.

The node and node connection macros let you connect information
and place labels, without knowing the exact position of what you are
connecting or where the lines should connect. These macros are useful
for making graphs and trees, mathematical diagrams, linguistic syntax
diagrams, and connecting ideas of any kind. They are the trickiest tricks
in PSTricks!

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape
to an object. See Section 6.

Node connections The node connections connect two nodes, identified
by their names. See Section 7.

Node labels The node label commands let you affix labels to the node
connections. See Section 8.

You can use these macros just about anywhere. The best way to position
them depends on the application. For greatest flexibility, you can use the
nodes in a \pspicture, positioning and rotating them with \rput. You can
also use them in alignment environments. pst-node.tex contains a special
alignment environment, \psmatrix, which is designed for positioning
nodes in a grid, such as in mathematical diagrams and some graphs.
\psmatrix is described in Section ??. pst-node.tex also contains high-
level macros for trees. These are described in Part ??.

But don’t restrict yourself to these more obvious uses. For example:

I made the file symbol a
node. Now I can draw
an arrow so that you
know what I am talking
about.

\rnode{A}{%

\parbox{4cm}{\raggedright

I made the file symbol a node. Now I can draw an

arrow so that you know what I am talking about.}}

\ncarc[nodesep=8pt]{->}{A}{file}

Nodes and Node Connections 6

6 Nodes

Nodes have a name. a boundary and a center.

PS
The name is for refering to the node when making node connections and
labels. You specify the name as an argument to the node commands.
The name must contain only letters and numbers, and must begin with
a letter. Bad node names can cause PostScript errors.

The center of a node is where node connections point to. The boundary
is for determining where to connect a node connection. The various
nodes differ in how they determine the center and boundary. They also
differ in what kind of visable object they create.

Here are the nodes:

\rnode[refpoint]{name}{stuff}

\rnode puts stuff in a box. The center of the node is refpoint , which
you can specify the same way as for \rput.

\Rnode*[par]{name}{stuff}

\Rnode also makes a box, but the center is set differently. If
you align \rnode’s by their baseline, differences in the height and
depth of the nodes can cause connecting lines to be not quite
parallel, such as in the following example:

sp Bit
\Large

\rnode{A}{sp} \hskip 2cm \rnode{B}{Bit}

\ncline{A}{B}

With \Rnode, the center is determined relative to the baseline:

sp Bit
\Large

\Rnode{A}{sp} \hskip 2cm \Rnode{B}{Bit}

\ncline{A}{B}

You can usually get by without fiddling with the center
of the node, but to modify it you set the

href=num Default: 0
vref=dim Default: .7ex

parameters. In the horizontal direction, the center is located
fraction href from the center to the edge. E.g, if href=-1, the
center is on the left edge of the box. In the vertical direction,
the center is located distance vref from the baseline. The vref

Nodes 7

parameter is evaluated each time \Rnode is used, so that you can
use ex units to have the distance adjust itself to the size of the
current font (but without being sensitive to differences in the size
of letters within the current font).

\pnode(x,y){name}

This creates a zero dimensional node at (x,y).

\cnode*[par](x,y){radius}{name}

This draws a circle. Here is an example with \pnode and \cnode:

\cnode(0,1){.25}{A}

\pnode(3,0){B}

\ncline{<-}{A}{B}

\Cnode*[par](x,y){name}

This is like \cnode, but the radius is the value of

radius=dim Default: 2pt

This is convenient when you want many circle nodes of the same
radius.

\circlenode*[par]{name}{stuff}

This is a variant of \pscirclebox that gives the node the shape of
the circle.

\cnodeput*[par]{angle}(x,y){name}{stuff}

This is a variant of \cput that gives the node the shape of the
circle. That is, it is like

\rput{angle}(x,y){\circlenode{name}{stuff }}

\ovalnode*[par]{name}{stuff}

This is a variant of \psovalbox that gives the node the shape of an
ellipse. Here is an example with \circlenode and \ovalnode:

Circle and Oval
\circlenode{A}{Circle} and \ovalnode{B}{Oval}

\ncbar[angle=90]{A}{B}

\dianode*[par]{name}{stuff}

This is like \diabox.

Nodes 8

\trinode*[par]{name}{stuff}

This is like \tribox.

Diamond

Triangle

\rput[tl](0,3){\dianode{A}{Diamond}}

\rput[br](4,0){\trinode[trimode=L]{B}{Triangle}}

\nccurve[angleA=-135,angleB=90]{A}{B}

\dotnode*[par](x,y){name}

This is a variant of \psdot. For example:

+

\dotnode[dotstyle=triangle*,dotscale=2 1](0,0){A}

\dotnode[dotstyle=+](3,2){B}

\ncline[nodesep=3pt]{A}{B}

\fnode*[par](x,y){name}

The f stands for “frame”. This is like, but easier than, putting a
\psframe in an \rnode.

\fnode{A}

\fnode*[framesize=1 5pt](2,2){B}

\ncline[nodesep=3pt]{A}{B}

There are two differences between \fnode and \psframe:

• There is a single (optional) coordinate argument, that gives
the center of the frame.

• The width and height of the frame are set by the

framesize=dim1 ‘dim2’ Default: 10pt

parameter. If you omit dim2, you get a square frame.

7 Node connections

All the node connection commands begin with nc, and they all have the
same syntax:1

1The node connections can be used with \pscustom. The beginning of the node
connection is attached to the current point by a straight line, as with \psarc.2

Node connections 9

\nodeconnection[par]{arrows}{nodeA}{nodeB}

A line of some sort is drawn from nodeA to nodeB. Some of the node
connection commands are a little confusing, but with a little experimen-
tation you will figure them out, and you will be amazed at the things
you can do. When we refer to the A and B nodes below, we are referring
only to the order in which the names are given as arguments to the node
connection macros.3

The node connections use many of the usual graphics parameters, plus
a few special ones. Let’s start with one that applies to all the node
connections:

nodesep=dim Default: 0pt

nodesep is the border around the nodes that is added for the purpose of
determining where to connect the lines.

For this and other node connection parameters, you can set different
values for the two ends of the node connection. Set the parameter
nodesepA for the first node, and set nodesepB for the second node.

The first two node connections draw a line or arc directly between the
two nodes:

\ncline*[par]{arrows}{nodeA}{nodeB}

This draws a straight line between the nodes. For example:

Idea 1

Idea 2

\rput[bl](0,0){\rnode{A}{Idea 1}}

\rput[tr](4,3){\rnode{B}{Idea 2}}

\ncline[nodesep=3pt]{<->}{A}{B}

\ncarc*[par]{arrows}{nodeA}{nodeB}

This connects the two nodes with an arc.

X

Y \cnodeput(0,0){A}{X}

\cnodeput(3,2){B}{Y}

\psset{nodesep=3pt}

\ncarc{->}{A}{B}

\ncarc{->}{B}{A}

3When a node name cannot be found on the same page as the node connection
command, you get either no node connection or a nonsense node connection. However,
TEX will not report any errors.

Node connections 10

The angle between the arc and the line between the two nodes is4

arcangle=angle Default: 8

\ncline and \ncarc both determine the angle at which the node connec-
tions join by the relative position of the two nodes. With the next group
of node connections, you specify one or both of the angles in absolute
terms, by setting the

angle=angle Default: 0

(and angleA and angleB) parameter.

You also specify the length of the line segment where the node connec-
tion joins at one or both of the ends (the “arms”) by setting the

arm=dim Default: 10pt

(and armA and armB) parameter.

These node connections all consist of several line segments, including
the arms. The value of linearc is used for rounding the corners.

Here they are, starting with the simplest one:

\ncdiag*[par]{arrows}{nodeA}{nodeB}

An arm is drawn at each node, joining at angle angleA or an-
gleB, and with a length of armA or armB. Then the two arms are
connected by a straight line, so that the whole line has three line
segments. For example:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncdiag[angleA=-90, angleB=90, arm=.5, linearc=.2]{A}{B}

4Rather than using a true arc, \ncarc actually draws a bezier curve. When con-
necting two circular nodes using the default parameter values, the curve will be
indistinguishable from a true arc. However, \ncarc is more flexible than an arc, and
works right connecting nodes of different shapes and sizes. You can set arcangleA
and arcangleB separately, and you can control the curvature with the ncurv parameter,
which is described on page ??.

Node connections 11

You can also set one or both of the arms to zero length. For exam-
ple, if you set arm=0, the nodes are connected by a straight line,
but you get to determine where the line connects (whereas the con-
nection point is determined automatically by \ncline). Compare
this use of \ncdiag with \ncline in the following example:

Root

XX

YY

\rput[r](4,1){\ovalnode{R}{Root}}

\cnodeput(1,2){A}{XX}

\cnodeput(1,0){B}{YY}

\ncdiag[angleB=180, arm=0]{<-}{A}{R}

\ncline{<-}{B}{R}

(Note that in this example, the default value angleA=0 is used.)

\ncdiagg*[par]{arrows}{nodeA}{nodeB}

\ncdiagg is similar to \ncdiag, but only the arm for node A is
drawn. The end of this arm is then connected directly to node B.
Compare \ncdiagg with \ncdiag when armB=0:

H

T

\ncdiagg

\ncdiag

\cnode(0,0){12pt}{a}

\rput[l](3,1){\rnode{b}{H}}

\rput[l](3,-1){\rnode{c}{T}}

\ncdiagg[angleA=180, armA=1.5, nodesepA=3pt]{b}{a}

\ncdiag[angleA=180, armA=1.5, armB=0, nodesepA=3pt]{c}{a}

You can use \ncdiagg with armA=0 if you want a straight line that
joins to node A at the angle you specify, and to node B at an angle
that is determined automatically.

\ncbar*[par]{arrows}{nodeA}{nodeB}

This node connection consists of a line with arms dropping
“down”, at right angles, to meet two nodes at an angle angleA.
Each arm is at least of length armA or armB, but one may be need
to be longer.

Connect some words!
\rnode{A}{Connect} some \rnode{B}{words}!

\ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}

\ncbar[nodesep=3pt,angle=70]{A}{B}

Generally, the whole line has three straight segments.

Node connections 12

\ncangle*[par]{arrows}{nodeA}{nodeB}

Now we get to a more complicated node connection. \ncangle
typically draws three line segments, like \ncdiag. However, rather
than fixing the length of arm A, we adjust arm A so that the line
joining the two arms meets arm A at a right angle. For example:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=-90,angleB=90,armB=1cm]{A}{B}

Now watch what happens when we change angleA:

Node A

angleA

Node B

}armB

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}

\ncangle is also a good way to join nodes by a right angle, with
just two line segments, as in this example:

Node A

Node B

\rput[tl](0,2){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleB=90, armB=0, linearc=.5]{A}{B}

\ncangles*[par]{arrows}{nodeA}{nodeB}

\ncangles is similar to \ncangle, but the length of arm A is fixed
by the armA parameter. Arm A is connected to arm B by two line
segments that meet arm A and each other at right angles. The
angle at which they join arm B, and the length of the connecting
segments, depends on the positions of the two arms. \ncangles
generally draws a total of four line segments.5 For example:

5Hence there is one more angle than \ncangle, and hence the s in \ncangles.

Node connections 13

Node A

Node B

\rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangles[angleA=-90, armA=1cm, armB=.5cm, linearc=.15]{A}{B}

Let’s see what happens to the previous example when we change
angleB:

Node A

Node B

angleAarmA{

angleB
armB

\rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangles[angleA=-90, angleB=135, armA=1cm, armB=.5cm,

linearc=.15]{A}{B}

\ncloop*[par]{arrows}{nodeA}{nodeB}

\ncloop is also in the same family as \ncangle and \ncangles, but
now typically 5 line segments are drawn. Hence, \ncloop can
reach around to opposite sides of the nodes. The lengths of the
arms are fixed by armA and armB. Starting at arm A, \ncloop
makes a 90 degree turn to the left, drawing a segment of length

loopsize=dim Default: 1cm

This segment connects to arm B the way arm A connects to arm
B with \ncline; that is, two more segments are drawn, which join
the first segment and each other at right angles, and then join arm
B. For example:

A looplo
op

si
ze

\rnode{a}{\psframebox{\Huge A loop}}

\ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{->}{a}{a}

In this example, node A and node B are the same node! You can
do this with all the node connections (but it doesn’t always make
sense).

Here is an example where \ncloop connects two different nodes:

Node connections 14

Begin

End

lo
op

si
ze

\parbox{3cm}{%

\rnode{A}{\psframebox{\large\bf Begin}}

\vspace{1cm}\hspace*{\fill}

\rnode{B}{\psframebox{\large\bf End}}

\ncloop[angleA=180,loopsize=.9,arm=.5,linearc=.2]{->}{A}{B}}

The next two node connections are a little different from the rest.

\nccurve*[par]{arrows}{nodeA}{nodeB}

\nccurve draws a bezier curve between the nodes.

Node A

Node B

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}

\rput[tr](4,3){\ovalnode{B}{Node B}}

\nccurve[angleB=180]{A}{B}

You specify the angle at which the curve joins the nodes by setting
the angle (and angleA and angleB) parameter. The distance to
the control points is set with the

ncurv=num Default: .67

(and ncurvA and ncurvB) parameter. A lower number gives a
tighter curve. (The distance between the beginning of the arc
and the first control point is one-half ncurvA times the distance
between the two endpoints.)

\nccircle*[par]{arrows}{node}{radius}

\nccircle draws a circle, or part of a circle, that, if complete, would
pass through the center of the node counterclockwise, at an angle
of angleA.

back

\rnode{A}{\bf back}

\nccircle[nodesep=3pt]{->}{A}{.7cm}

\kern 5pt

\nccircle can only connect a node to itself; it is the only node
connection with this property. \nccircle is also special because it
has an additional argument, for specifying the radius of the circle.

Node connections 15

The last two node connections are also special. Rather than connecting
the nodes with an open curve, they enclose the nodes in a box or curved
box. You can think of them as variants of \ncline and \ncarc. In both
cases, the half the width of the box is

boxsize=dim Default: .4cm

You have to set this yourself to the right size, so that the nodes fit
inside the box. The boxsize parameter actually sets the boxheight and
boxdepth parameters. The ends of the boxes extend beyond the nodes
by nodesepA and nodesepB.

\ncbox*[par]{nodeA}{nodeB}

\ncbox encloses the nodes in a box with straight sides. For
example:

Idea 1

Idea 2 \rput[bl](.5,0){\rnode{A}{Idea 1}}

\rput[tr](3.5,2){\rnode{B}{Idea 2}}

\ncbox[nodesep=.5cm,boxsize=.6,linearc=.2,

linestyle=dashed]{A}{B}

\ncarcbox*[par]{nodeA}{nodeB}

\ncarcbox encloses the nodes in a curved box that is arcangleA

away from the line connecting the two nodes.

1

2 \rput[bl](.5,0){\rnode{A}{1}}

\rput[tr](3.5,2){\rnode{B}{2}}

\ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,

arcangle=50]{<->}{A}{B}

The arc is drawn counterclockwise from node A to node B.

There is one other node connection parameter that applies to all the node
connections, except \ncarcbox:

offset=dim Default: 0pt

Node connections 16

(You can also set offsetA and offsetB independently.) This shifts the
point where the connection joins up by dim (given the convention that
connections go from left to right).

There are two main uses for this parameter. First, it lets you make two
parallel lines with \ncline, as in the following example:

X

Y \cnodeput(0,0){A}{X}

\cnodeput(3,2){B}{Y}

\psset{nodesep=3pt,offset=4pt,arrows=->}

\ncline{A}{B}

\ncline{B}{A}

Second, it lets you join a node connection to a rectangular node at a
right angle, without limiting yourself to positions that lie directly above,
below, or to either side of the center of the node. This is useful, for
example, if you are making several connections to the same node, as in
the following example:

Word1 and Word2 and Word3
\rnode{A}{Word1} and \rnode{B}{Word2} and \rnode{C}{Word3}

\ncbar[offsetB=4pt,angleA=-90,nodesep=3pt]{->}{A}{B}

\ncbar[offsetA=4pt,angleA=-90,nodesep=3pt]{->}{B}{C}

Sometimes you might be aligning several nodes, such as in a tree, and
you want to ends or the arms of the node connections to line up. This
won’t happen naturally if the nodes are of different size, as you can see
in this example:

H a

\Huge

\cnode(1,3){4pt}{a}

\rput[B](0,0){\Rnode{b}{H}}

\rput[B](2,0){\Rnode{c}{a}}

\psset{angleA=90,armA=1,nodesepA=3pt}

\ncdiagg{b}{a}

\ncdiagg{c}{a}

If you set the nodesep or arm parameter to a negative value, PSTricks
will measure the distance to the beginning of the node connection or to
the end of the arm relative to the center of the node, rather than relative
to the boundary of the node or the beginning of the arm. Here is how
we fix the previous example:

Node connections 17

H a

\Huge

\cnode(1,3){4pt}{a}

\rput[B](0,0){\Rnode{b}{H}}

\rput[B](2,0){\Rnode{c}{a}}

\psset{angleA=90,armA=1,nodesepA=-12pt}

\ncdiagg{b}{a}

\ncdiagg{c}{a}

Note also the use of \Rnode.

One more parameter trick: By using the border parameter, you can create
the impression that one node connection passes over another.

The node connection commands make interesting drawing tools as well,
as an alternative to \psline for connecting two points. There are variants
of the node connection commands for this purpose. Each begins with
pc (for “point connection”) rather than nc. E.g.,

\pcarc{<->}(3,4)(6,9)

gives the same result as

\pnode(3,4){A}

\pnode(6,9){B}

\pcarc{<->}{A}{B}

Only \nccircle does not have a pc variant:

Command Corresponds to:

\pcline{arrows}(x1,y1)(x2,y2) \ncline

\pccurve{arrows}(x1,y1)(x2,y2) \nccurve

\pcarc{arrows}(x1,y1)(x2,y2) \ncarc

\pcbar{arrows}(x1,y1)(x2,y2) \ncbar

\pcdiag{arrows}(x1,y1)(x2,y2) \ncdiag

\pcangle{arrows}(x1,y1)(x2,y2) \ncangle

\pcloop{arrows}(x1,y1)(x2,y2) \ncloop

\pcbox(x1,y1)(x2,y2) \ncbox

\pcarcbox(x1,y1)(x2,y2) \ncarcbox

8 Node connections labels: I

Now we come to the commands for attaching labels to the node connec-
tions. The label command must come right after the node connection to

Node connections labels: I 18

which the label is to be attached. You can attach more than one label to
a node connection, and a label can include more nodes.

The node label commands must end up on the same TEX page as the
node connection to which the label corresponds.

There are two groups of connection labels, which differ in how they
select the point on the node connection. In this section we describe the
first group:

\ncput*[par]{stuff }

\naput*[par]{stuff }

\nbput*[par]{stuff }

These three command differ in where the labels end up with respect to
the line:

\ncput on the line

\naput above the line

\nbput below the line

(using the convention that node connections go from left to right).

Here is an example:

above

on

below

\cnode(0,0){.5cm}{root}

\cnode*(3,1.5){4pt}{A}

\cnode*(3,0){4pt}{B}

\cnode*(3,-1.5){4pt}{C}

\psset{nodesep=3pt}

\ncline{root}{A}

\naput{above}

\ncline{root}{B}

\ncput*{on}

\ncline{root}{C}

\nbput{below}

\naput and \nbput use the same algorithm as \uput for displacing the
labels, and the distance beteen the line and labels is labelsep (at least if
the lines are straight).

\ncput uses the same system as \rput for setting the reference point. You
change the reference point by setting the

ref=ref Default: c

Node connections labels: I 19

parameter.

Rotation is also controlled by a graphics parameter:

nrot=rot Default: 0

rot can be in any of the forms suitable for \rput, and you can also use
the form

{:angle}

The angle is then measured with respect to the node connection. E.g.,
if the angle is {:U}, then the label runs parallel to the node connection.
Since the label can include other put commands, you really have a lot
of control over the label position.

The next example illustrates the use {:angle}, the offset parameter, and
\pcline:

Length \pspolygon(0,0)(4,2)(4,0)

\pcline[offset=12pt]{|-|}(0,0)(4,2)

\ncput*[nrot=:U]{Length}

Here is a repeat of an earlier example, now using {:angle}:

above

on

below

\cnode(0,0){.5cm}{root}

\cnode*(3,1.5){4pt}{A}

\cnode*(3,0){4pt}{B}

\cnode*(3,-1.5){4pt}{C}

\psset{nodesep=3pt,nrot=:U}

\ncline{root}{A}

\naput{above}

\ncline{root}{B}

\ncput*{on}

\ncline{root}{C}

\nbput{below}

The position on the node connection is set by the

npos=num Default:

Node connections labels: I 20

parameter, roughly according to the following scheme: Each node con-
nection has potentially one or more segments, including the arms and
connecting lines. A number npos between 0 and 1 picks a point on the
first segment from node A to B (fraction npos from the beginning to the
end of the segment), a number between 1 and 2 picks a number on the
second segment, and so on.

Each node connection has its own default value of npos. If you leave
the npos parameter value empty (e.g., [npos=]), then the default is sub-
stituted. This is the default mode.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤pos≤1 0.5

\nccurve 1 0≤pos≤1 0.5

\ncarc 1 0≤pos≤1 0.5

\ncbar 3 0≤pos≤3 1.5

\ncdiag 3 0≤pos≤3 1.5

\ncdiagg 2 0≤pos≤2 0.5

\ncangle 3 0≤pos≤3 1.5

\ncangles 4 0≤pos≤4 1.5

\ncloop 5 0≤pos≤5 2.5

\nccircle 1 0≤pos≤1 0.5

\ncbox 4 0≤pos≤4 0.5

\ncarcbox 4 0≤pos≤4 0.5

Here is an example:

Node A

Node B

d

pa
r

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](3.5,0){\ovalnode{B}{Node B}}

\ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}

\ncput*{d}

\nbput[nrot=:D,npos=2.5]{par}

With \ncbox and \ncarcbox, the segments run counterclockwise, starting
with the lower side of the box. Hence, with \nbput the label ends up
outside the box, and with \naput the label ends up inside the box.

Node connections labels: I 21

1

2

set

II \rput[bl](.5,0){\rnode{A}{1}}

\rput[tr](3.5,2){\rnode{B}{2}}

\ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,

arcangle=50,linestyle=dashed]{<->}{A}{B}

\nbput[nrot=:U]{set}

\nbput[npos=2]{II}

If you set the parameter

shortput=none/nab/tablr/tab Default: none

to nab, then immediately following a node connection or another node
connection label you can use ˆ instead of \naput and _ instead of \nbput.

x

y

\cnode(0,0){.5cm}{root}

\cnode*(3,1.5){4pt}{A}

\cnode*(3,-1.5){4pt}{C}

\psset{nodesep=3pt,shortput=nab}

\ncline{root}{A}ˆ{x}

\ncline{root}{C}_{y}

You can still have parameter changes with the short ˆ and _ forms.
Another example is given on page 27.

If you have set shortput=nab, and then you want to use a true ˆ or _

character right after a node connection, you must precede the ˆ or _ by
{} so that PSTricks does not convert it to \naput or \nbput.

You can change the characters that you use for the short form with the

\MakeShortNab{char1}{char2}

command.6

The shortput=tablr and shortput=tab options are described on pages 24
and ??, respectively.

9 Node connection labels: II

Now the second group of node connections:

6You can also use \MakeShortNab if you want to use ˆ and _ with non-standard
category codes. Just invoke the command after you have made your \catcode changes.

Node connection labels: II 22

\tvput*[par]{stuff }

\tlput*[par]{stuff }

\trput*[par]{stuff }

\thput*[par]{stuff }

\taput*[par]{stuff }

\tbput*[par]{stuff }

The difference between these commands and the \n*put commands
is that these find the position as an intermediate point between the
centers of the nodes, either in the horizontal or vertical direction. These
are good for trees and mathematical diagrams, where it can sometimes
be nice to have the labels be horizontally or vertically aligned. The t

stands for “tree”.

You specify the position by setting the

tpos=num Default: .5

parameter.

\tvput, \tlput and \trput find the position that lies fraction tpos in the
vertical direction from the upper node to the lower node. \thput, \taput

and \tbput find the position that lies fraction tpos in the horizontal
direction from the left node to the right node. Then the commands put
the label on or next to the line, as follows:

Command Direction Placement

\tvput vertical middle

\tlput vertical left

\trput vertical right

\thput horizontal middle

\taput horizontal above

\tbput horizontal below

Here is an example:

\[

\setlength{\arraycolsep}{1.1cm}

\begin{array}{cc}

\Rnode{a}{(X-A)} & \Rnode{b}{A} \\[1.5cm]

\Rnode{c}{x} & \Rnode{d}{\tilde{X}}

\end{array}

Node connection labels: II 23

\psset{nodesep=5pt,arrows=->}

\everypsbox{\scriptstyle}

\ncline{a}{c}\tlput{r}

\ncline{a}{b}\taput{u}

\ncline[linestyle=dashed]{c}{d}\tbput{b}

\ncline{b}{d}\trput{s}

\]

(X – A) A

x X̃

r

u

b

s

(X – A) A

x X̃

r

u

b

s

On the left is the diagram with \tlput, \trput \tbput and \Rnode, as shown
in the code. On the right is the same diagram, but with \naput \nbput
and \rnode.

These do not have a rotation argument or parameter. However, you can
rotate stuff in 90 degree increments using box rotations (e.g., \rotateleft).

If you set shortput=tablr, then you can use the following single-character
abbreviations for the t put commands:

Char. Short for:

ˆ \taput

_ \tbput

< \tlput

> \trput

You can change the character abbreviations with

\MakeShortTablr{char1}{char2}{char3}{char4}

The t put commands, including an example of shortput=tablr, will be
shown further when we get to mathematical diagrams and trees.

Driver notes: The node macros use \pstVerb and \pstverbscale.

10 Attaching labels to nodes

The command

Attaching labels to nodes 24

\nput*[par]{refangle}{name}{stuff}

affixes stuff to node name. It is positioned distance labelsep from the
node, in the direction refangle from the center of the node. The algorithm
is the same as for \uput. If you want to rotate the node, set the

rot=rot Default: 0

parameter, where rot is a rotation that would be valid for \rput.7 The
position of the label also takes into account the offsetA parameter. If
labelsep is negative, then the distance is from the center of the node
rather than from the boundary, as with nodesep.

Here is how I used \nput to mark an angle in a previous example:

Node B

Node A

angleA

\rput[br](4,0){\ovalnode{B}{Node B}}

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\nput[labelsep=0]{-70}{A}{%

\psarcn(0,0){.4cm}{0}{-70}

\uput{.4cm}[-35](0,0){{\tt angleA}}}

\ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}

\ncput[nrot=:U,npos=1]{\psframe[dimen=middle](0,0)(.35,.35)}

11 Mathematical diagrams and graphs

For some applications, such as mathematical diagrams and graphs, it
is useful to arrange nodes on a grid. You can do this with alignment
environments, such as TEX’s \halignprimitive, LaTEX’s tabular environ-
ment, and AMS-TEX’s \matrix, but PSTricks contains its own alignment
environment that is especially adapted for this purpose:

\psmatrix ... \endpsmatrix

Here is an example

A

B E C

D

$

\psmatrix[colsep=1cm,rowsep=1cm]

& A \\

B & E & C \\

& D &

\endpsmatrix

$

7Not to be confused with the nput parameter.

Mathematical diagrams and graphs 25

As an alignment environment, \psmatrix is similar to AMS-TEX’s \matrix.
There is no argument for specifying the columns. Instead, you can just
use as many columns as you need. The entries are horizontally centered.
Rows are ended by \\. \psmatrix can be used in or out of math mode.

Our first example wasn’t very interesting, because we didn’t make use
of the nodes. Actually, each entry is a node. The name of the node in
row row and column col is {row,col}, with no spaces. Let’s see some
node connections:

X

Y Z

f g

h

$

\psmatrix[colsep=1cm]

& X \\

Y & Z

\endpsmatrix

\everypsbox{\scriptstyle}%

\psset{nodesep=3pt,arrows=->}

\ncline{1,2}{2,1}

\tlput{f}

\ncline{1,2}{2,2}

\trput{g}

\ncline[linestyle=dotted]{2,1}{2,2}

\tbput{h}

$

You can include the node connections inside the \psmatrix, in the last
entry and right before \endpsmatrix. One advantage to doing this is that
shortput=tablr is the default within a \psmatrix.

U

X�Z Y X

Y Z

y

x

q

p

f

g

$

\begin{psmatrix}

U \\

& X\times_Z Y & X \\

& Y & Z

\psset{arrows=->,nodesep=3pt}

\everypsbox{\scriptstyle}

\ncline{1,1}{2,2}_{y}

\ncline[doubleline=true,linestyle=dashed]{-}{1,1}{2,3}ˆ{x}

\ncline{2,2}{3,2}<{q}

\ncline{2,2}{2,3}_{p}

\ncline{2,3}{3,3}>{f}

\ncline{3,2}{3,3}_{g}

\end{psmatrix}

$

Mathematical diagrams and graphs 26

You can change the kind of nodes that are made by setting the

mnode=type Default: R

parameter. Valid types are R, r, C, f, p, circle, oval, dia, tri, dot and
none, standing for \Rnode, \rnode, \Cnode, \fnode, \pnode, \circlenode,
\ovalnode, \dotnode and no node, respectively. Note that for circles,
you use mnode=C and set the radius with the radius parameter.

For example:

A

B E C

D

a
b

c
d

ef

g

\psmatrix[mnode=circle,colsep=1]

& A \\

B & E & C \\

& D &

\endpsmatrix

\psset{shortput=nab,arrows=->,labelsep=3pt}

\small

\ncline{2,2}{2,3}ˆ[npos=.75]{a}

\ncline{2,2}{2,1}ˆ{b}

\ncline{3,2}{2,1}ˆ{c}

\ncarc[arcangle=-40,border=3pt]{3,2}{1,2}

_[npos=.3]{d}ˆ[npos=.7]{e}

\ncarc[arcangle=12]{1,2}{2,1}ˆ{f}

\ncarc[arcangle=12]{2,1}{1,2}ˆ{g}

Note that a node is made only for the non-empty entries. You can also
specify a node for the empty entries by setting the

emnode=type Default: none

parameter.

You can change parameters for a single entry by starting with entry
with the parameter changes, enclosed in square brackets. Note that the
changes affect the way the node is made, but not contents of the entry
(use \psset for this purpose). For example:

Mathematical diagrams and graphs 27

X

Y Z

$

\psmatrix[colsep=1cm]

& [mnode=circle] X \\

Y & Z

\endpsmatrix

\psset{nodesep=3pt,arrows=->}

\ncline{1,2}{2,1}

\ncline{1,2}{2,2}

\ncline[linestyle=dotted]{2,1}{2,2}

$

If you want your entry to begin with a [that is not meant to indicate
parameter changes, then precede it by {}.

You can assign your own name to a node by setting the

name=name Default:

parameter at the beginning of the entry, as described above. You can
still refer to the node by {row,col}, but here are a few reasons for giving
your own name to a node:

• The name may be easier to keep track of;

• Unlike the {row,col} names, the names you give remain valid even
when you add extra rows or columns to your matrix.

• The names remain valid even when you start a new \psmatrix that
reuses the {row,col} names.

Here a few more things you should know:

• The baselines of the nodes pass through the centers of the nodes.
\psmatrix achieves this by setting the

nodealign=true/false Default: false

parameter to true. You can also set this parameter outside of
\psmatrix when you want this kind of alignment.

• You can left or right-justify the nodes by setting the

mcol=l/r/c Default: c

parameter. l, r and c stand for left, right and center, respectively.

• The space between rows and columns is set by the

Mathematical diagrams and graphs 28

rowsep=dim Default: 1.5cm
colsep=dim Default: 1.5cm

parameters.

• If you want all the nodes to have a fixed width, set

mnodesize=dim Default: -1pt

to a positive value.

• If \psmatrix is used in math mode, all the entries are set in math
mode, but you can switch a single entry out of math mode by
starting and ending the entry with $.

• The radius of the C mnode (corresponding to \Cnode) is set by the

radius=dim Default: 2pt

parameter.

• Like in LaTEX, you can end a row with \\[dim] to insert an extra
space dim between rows.

• The command \psrowhookii is executed, if defined, at the begin-
ning of every entry in row ii (row 2), and the command \pscolhookv

is executed at the beginning of every entry in column v (etc.).
You can use these hooks, for example, to change the spacing be-
tween two columns, or to use a special mnode for all the entries
in a particular row.

• An entry can itself be a node. You might do this if you want an
entry to have two shapes.

• If you want an entry to stretch across several (int) columns, use
the

\psspan{int}

at the end of the entry. This is like Plain TEX’s \multispan, or
LaTEX’s \multicolumn, but the template for the current column (the
first column that is spanned) is still used. If you want wipe out
the template as well, use \psspan{int} at the beginning of the
entry instead. If you just want to wipe out the template, use \omit

before the entry.

Mathematical diagrams and graphs 29

• \psmatrix can be nested, but then all node connections and other
references to the nodes in the {row,col} form for the nested matrix
must go inside the \psmatrix. This is how PSTricks decides
which matrix you are referring to. It is still neatest to put all
the node connections towards the end; just be sure to put them
before \endpsmatrix. Be careful also not to refer to a node until
it actually appears. The whole matrix can itself go inside a node,
and node connections can be made as usual. This is not the same
as connecting nodes from two different \psmatrix’s. To do this,
you must give the nodes names and refer to them by these names.

12 Obsolete put commands

This is old documentation, but these commands will continue to be
supported.

There is also an obsolete command \Lput for putting labels next to node
connections. The syntax is

\Lput{labelsep}[refpoint]{rotation}(pos){stuff }

It is a combination of \Rput and \lput, equivalent to

\lput(pos){\Rput{labelsep}[refpoint]{rotation}(0,0){stuff }}

\Mput is a short version of \Lput with no {rotation} or (pos) argument.
\Lput and \Mput remain part of PSTricks only for backwards compati-
bility.

Here are the node label commands:

\lput*[refpoint]{rotation}(pos){stuff}

The l stands for “label”. Here is an example illustrating the use
of the optional star and :angle with \lput, as well as the use of the
offset parameter with \pcline:

Length \pspolygon(0,0)(4,2)(4,0)

\pcline[offset=12pt]{|-|}(0,0)(4,2)

\lput*{:U}{Length}

Obsolete put commands 30

(Remember that with the put commands, you can omit the coor-
dinate if you include the angle of rotation. You are likely to use
this feature with the node label commands.)

With \lput and \rput, you have a lot of control over the position of
the label. E.g.,

label \pcline(0,0)(4,2)

\lput{:U}{\rput[r]{N}(0,.4){label}}

puts the label upright on the page, with right side located .4
centimeters “above” the position .5 of the node connection (above
if the node connection points to the right). However, the \aput
and \bput commands described below handle the most common
cases without \rput.8

\aput*[labelsep]{angle}(pos){stuff }

stuff is positioned distance \pslabelsep above the node connec-
tion, given the convention that node connections point to the right.
\aput is a node-connection variant of \uput. For example:

Hypotenuse \pspolygon(0,0)(4,2)(4,0)

\pcline[linestyle=none](0,0)(4,2)

\aput{:U}{Hypotenuse}

\bput*[labelsep]{angle}(pos){stuff }

This is like \aput, but stuff is positioned below the node connec-
tion.

It is fairly common to want to use the default position and rotation with
these node connections, but you have to include at least one of these
arguments. Therefore, PSTricks contains some variants:

8There is also an obsolete command \Lput for putting labels next to node connec-
tions. The syntax is

\Lput{labelsep}[refpoint]{rotation}(pos){stuff }

It is a combination of \Rput and \lput, equivalent to

\lput(pos){\Rput{labelsep}[refpoint]{rotation}(0,0){stuff }}

\Mput is a short version of \Lput with no {rotation} or (pos) argument. \Lput and
\Mput remain part of PSTricks only for backwards compatibility.

Obsolete put commands 31

\mput*[refpoint]{stuff }

\Aput*[labelsep]{stuff }

\Bput*[labelsep]{stuff }

of \lput, \aput and \bput, respectively, that have no angle or positioning
argument. For example:

1

\cnode*(0,0){3pt}{A}

\cnode*(4,2){3pt}{B}

\ncline[nodesep=3pt]{A}{B}

\mput*{1}

Here is another:

Label \pcline{<->}(0,0)(4,2)

\Aput{Label}

Obsolete put commands 32

II Trees

13 Overview

The node and node connections are perfect tools for making trees. The
pstree file pstree.tex / pstree.sty contains a high-level interface for positioning

the nodes in a tree.

The main tree macro is

\pstree{(root)node}{(sub)trees and (terminal)nodes}

This positions the root node above its successors.

root

\pstree{\Toval{root}}{\TC* \TC* \TC* \TC*}

\pstree produces a box that encloses all the nodes, and whose baseline
passes through the center of the root node.

For most of the nodes described in Section 6 (e.g., \ovalnode), there
is a variant for use within a tree (e.g., \Toval). Note that there is no
distinction between a terminal node and a root node, other than their
position in the \pstree command.

A tree, when included in the list or successors, becomes a subtree.

\pstree{\Tp}{%

\TC*

\pstree{\Tc{3pt}}{\TC* \TC*}

\TC*}

Trees 33

14 Tree Nodes

For most nodes described in Section 6, you can add strip node from the
end of the name and add T add the beginning to obtain a node for use
in trees. The syntax of a tree node is the same as of its corresponding
“normal” node, except that:

• there is always an optional argument for setting graphics param-
eters, even if the original node did not have one,

• there is no argument for specifying the name of the node, and

• there is never a coordinate argument for positioning the node.

• to set the reference point with \Tr, set the ref parameter.

Here is the list of such tree nodes:

\Tp*[par]

\Tc*[par]{dim}

\TC*[par]

\Tf*[par]

\Tdot*[par]

\Tr*[par]{stuff}

\TR*[par]{stuff}

\Tcircle*[par]{stuff }

\Toval*[par]{stuff }

\Tdia*[par]{stuff }

\Ttri*[par]{stuff }

\Rnode is a good choice when you want the baselines of the text in the
nodes to line up horizontally.

X

˜̃X x y

$

\pstree[nodesepB=3pt]{\Tcircle{X}}{%

\TR{\tilde{\tilde{X}}}

\TR{x}

\TR{y}}

$

Compare the preceding example with the next one, which uses \rnode:

Tree Nodes 34

X

˜̃X x y

$

\pstree[nodesepB=3pt]{\Tcircle{X}}{%

\Tr{\tilde{\tilde{X}}}

\Tr{x}

\Tr{y}}

$

There is also a null tree node

\Tn

It is meant to be just a place holder.

\pstree[nodesep=3pt]{\TC*}{%

\pstree{\TC*}{\TC* \Tn}

\pstree{\TC*}{%

\TC*

\pstree{\TC*}{\Tn\TC*}}}

Actually, if I was going to do this a lot I would define some short-cuts:

\def\mytree{\pstree{\TC*}}

\def\ltree#1{\mytree{#1\Tn}}

\def\rtree#1{\mytree{\Tn#1}}

\psset{nodesep=3pt}

\mytree{%

\ltree{\TC*}

\mytree{%

\TC*

\rtree{\TC*}}}

There is also a special tree node that doesn’t have a “normal” version
and that can’t be used as the root node of a whole tree:

\Tfan*[par]

Tree Nodes 35

This draws a triangle whose base is

fansize=dim Default: 1cm

and whose opposite corner is the predecessor node, adjusted by the value
of nodesepA and offsetA. For example:

foo

bar

\pstree{\Tcircle{foo}}{%

\Tfan

\Tf*[framesize=4pt]

\pstree{\Tr{\psframebox[framearc=.5]{bar}}}{\Tfan}}

Here is another example illustrating that a \Tfan can have successors:

foo

\pstree{\Tcircle{foo}}{%

\pstree{\Tfan*[linearc=.1]}{%

\Tc*{2pt}

\Tfan[linestyle=dashed]}}

15 Trees

This section describes several graphics parameters for \pstree. Any
settings of graphics parameters for \pstree affects all of its successors,
including subtrees. but not the root node.

The

treemode=R/L/U/D Default:

parameter controls the direction in which the tree grows. R, L, U and
D stand for “right”, “left”, “up” and “down”, respectively. When you
change the treemode, the treemode of all nested trees changes as well.

For example, here is a tree that grows up, and then to the left:

Trees 36

⊕

⊕
⊕ ⊕

\pstree[treemode=U,dotstyle=oplus,dotsize=6pt,

nodesep=2pt]{\Tc{3pt}}{%

\pstree[treemode=L]{\Tc{3pt}}{%

\Tdot

\Tdot}

\Tdot

\Tdot}

When the tree goes up or down, the successors are lined up from left
to right in the order they appear in \pstree’s argument. When the tree
goes left or right, the successors are lined up from top to bottom. As an
afterthought, you might want to flip the order of the nodes. The

treeflip=true/false Default: false

let’s you do this.

A tree can also be root node. This is useful when the nested tree goes
off in a different direction. If treeB is the root node of treeA, then the
root of treeB is also the root node treeA.

rootB

A1 A2

\pstree{%

\pstree[treemode=L]{\Tcircle{root}}{%

\Tr{B}}%

}{%

\Tr{A1}

\Tr{A2}}

A node can also contain a tree, but that is another story.

The distance between successors and between levels is given by the

treesep=dim Default: .75cm
levelsep=*dim Default: 2cm

parameters.

The distance between successors takes into account the size of the
nodes, but the distance between levels does not, at least by default. If
you include the optional * when setting levelsep, the level sep is in
addition to the size of the nodes. However, PSTricks needs a second
run through TEX (without any changes between runs) to get the spacing
right, and it writes to the .aux file with LaTEX, and to the file \jobname.pst

with other macro packages. (Even then, there is no guarantee it will get
the spacing right.)

Here are two exaggerated examples that illustrates the difference be-
tween relative and absolute spacing between levels:

Trees 37

\pstree[levelsep=1cm,radius=2pt]{\Tc{3pt}}{%

\TC*

\pstree{\Tc{3pt}}{%

\Tc*{15pt}

\TC*}

\TC*}

\psset{levelsep=*1cm,radius=2pt}

\pstree{\Tc{3pt}}{%

\TC*

\pstree{\Tc{3pt}}{%

\Tc*{15pt}

\TC*}

\TC*}

If you set the

treenodesize=dim Default: -1pt

to a non-negative value, then PSTricks uses treenodesize as a fixed
size of the successors (in the direction of their neighbors, i.e., a fixed
width for vertical trees and a fixed height/depth for horizontal trees).
For example, sometimes it is esthetically pleasing to smooth over small
variations in the sizes of the nodes. Compare

j K4 x > y

\pstree[nodesepB=-8pt]{\Tc{3pt}}{%

\TR{j}%

\TR{K_4}%

\TR{$x>y$}}

with

j K4 x > y

\pstree[treenodesize=.4cm,treesep=.3cm,nodesepB=-8pt]{\Tc{3pt}}{%

\TR{j}%

\TR{K_4}%

\TR{$x>y$}}

A subtree’s profile varies from level to level. \pstree has two modes for
fitting subtrees together:

tight With tight fit, the subtrees are fit together so that the minimum
distance on any level is treesep. This is the default.

Trees 38

loose With loose fit, the distance between the subtrees’ bounding boxes
is treesep. Except when you have exceptionally large interme-
diate nodes, the effect is that the horizontal distance (or vertical
distance, for horizontal trees) between all the terminal nodes is
the same.

You select the mode with the

treefit=tight/loose Default: tight

parameter.

treefit=tight treefit=loose

As noted at the beginning of this section, parameter changes made with
\pstree affect all subtrees. However, there are variants of some of these
parameters for making local changes, i.e, changes that affects only the
current level:

thistreesep=dim Default:
thistreenodesize=dim Default:
thistreefit=tight/loose Default:
thislevelsep=*dim Default:

For example:

\pstree[thislevelsep=.5cm,thistreesep=2cm,radius=2pt]{\Tc*{3pt}}{%

\pstree{\TC*}{\TC* \TC*}

\pstree{\TC*}{\TC* \TC*}}

Trees 39

There are some things you may want set uniformly across a level in the
tree, such as the levelsep. At level n, the command \pstreehookroman(n)
(e.g., \pstreehookii) is executed, if it is defined (the root node of the whole
tree is level 0, the successor tree objects and the node connections from
the root node to these successors is level 1, etc.). In the following
example, the levelsep is changed for level 2, without having to set the
thislevelsep parameter for each of the three subtrees that make of level
2:

\[

\def\pstreehookiii{\psset{thislevelsep=3cm}}

\pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{X_1} \Tr{X_2}}

\pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{K_1} \Tr{K_2}}

\pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

\]

X1

X2

Y1

Y2

K1

K2

J1

J2

16 Edges

A tree node is really a composite object. In addition to creating a new
node, it also draws a node connection between itself and its predecessor,
if there is one.

Edges 40

When a tree node has made the new node, the command \pssucc is
equal to the name of this node, and \pspred is equal to the name of its
predecessor. Then the tree node executes

\psedge{\pspred}{\pssucc}

You can define \psedge to make whatever node connection you want
(see Section ??). For example, here I use \ncdiag, with armA=0, to
get all the node connections to emanate from the same point in the
predecessor:

\def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm]}

% Or: \renewcommand{\psedge}{ ... }

\pstree[treemode=R,levelsep=3.5cm,framesep=2pt]{\Tc{6pt}}{%

\small \Tcircle{N} \Tcircle{K} \Tcircle{H} \Tcircle{L}}

N

K

H

L

Here is another example with \ncdiagg. Note the use of negative the
armA value so that the corners of the edges are vertically aligned, even
though the nodes have different sizes:

$

\def\psedge#1#2{\ncdiagg[angleA=180, armA=-3cm,

nodesep=4pt]{#2}{#1}}

% Or: \renewcommand{\psedge}[2]{ ... }

\pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%

\Tr{z_1\leq y}

\Tr{z_1<y\leq z_2}

\Tr{z_2<y\leq x}

\Tr{x<y}}

$

Edges 41

z1≤y

z1 < y≤z2

z2 < y≤x

x < y

Another way to define \psedge is with the

edge=command Default: \ncline

parameter. Be sure to enclose the value in braces {} if it contains commas
or other parameter delimiters. This gets messy if your command is
long, and you can’t use arguments like in the preceding example, but for
simple changes it is useful. For example, if I want to switch between
a few node connections frequently, I might define a command for each
node connection, and then use the edge parameter.

\def\dedge{\ncline[linestyle=dashed]}

\pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%

\TC*[edge=\dedge]

\pstree{\Tc{3pt}}{\TC*[edge=\dedge] \TC*}

\TC*}

You can also set edge=none to suppress the node connection.

edge is the only parameter which, when set in a tree node’s parameter
argument, affects the drawing of the node connection (e.g., if you want
to change the nodesep, your edge has to include the parameter change,
or you have to set it before the node).

If you want to draw a node connection between two nodes that are not
direct predecessor and successor, you have to give the nodes a name
that you can refer to, using the name parameter. For example, here I
connect two nodes on the same level:

Edges 42

nature

\pstree[nodesep=3pt,radius=2pt]{\Toval{nature}}{%

\pstree{\Tc[name=top]{3pt}}{\TC* \TC*}

\pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}

\ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

root

X

Y

Z

\def\psedge{\nccurve[angleB=180, nodesepB=3pt]}

\pstree[treemode=R, treesep=1.5, levelsep=3.5]%

{\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

root

x y z

\pstree[nodesepB=3pt, arrows=->, xbbl=15pt,

xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%

$

\TR[edge={\ncbar[angle=180]}]{x}

\TR{y}

\TR[edge=\ncbar]{z}

$}

root
\psset{armB=1cm, levelsep=3cm, treesep=1cm,

angleB=-90, angleA=90, arrows=<-, nodesepA=3pt}

\def\psedge#1#2{\ncangle{#2}{#1}}

\pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC* \TC*}

17 Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach
labels using \ncput \tlput, etc.

Edge and node labels 43

With \tlput, \trput, \taput and \tbput, you can align the labels vertically
or horizontally, just like the nodes. This can look nice, at least if the
slopes of the node connections are not too different.

k r

j i

m

\pstree[radius=2pt]{\Tp}{%

\psset{tpos=.6}

\TC* \tlput{k}

\pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%

\TC* \tlput{j}

\TC* \trput{i}}

\TC* \trput{m}}

Within trees, the tpos parameter measures this distance from the prede-
cessor to the successor, whatever the orientation of the true. (Outside
of trees it measures the distance from the top to bottom or left to right
nodes.)

PSTricks also sets shortput=tab within trees. This is a special shortput
option that should not be used outside of trees. It implements the
following abbreviations, which depend of the orientation of the true:

Short for:

Char. Vert. Horiz.

ˆ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true.)

above

left right

above

below

\psset{tpos=.6}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%

\pstree[treemode=U, xbbr=20pt]{\Tc{3pt}ˆ{above}}{%

\TC*ˆ{left}

\TC*_{right}}

\TC*ˆ{above}

\TC*_{below}}

You can change the character abbreviations with

\MakeShortTab{char1}{char2}

Edge and node labels 44

The \n*put commands can also give good results:

above

above

below

\psset{npos=.6,nrot=:U}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm]{\Tc{3pt}}{%

\Tc{3pt}\naput{above}

\Tc*{2pt}\naput{above}

\Tc*{2pt}\nbput{below}}

You can put labels on the nodes using \nput. However, \pstree won’t
take these labels into account when calculating the bounding boxes.

There is a special node label option for trees that does keep track of the
bounding boxes:

˜*[par]{stuff }

Call this a “tree node label”.

Put a tree node label right after the node to which it applies, before
any node connection labels (but node connection labels, including the
short forms, can follow a tree node label). The label is positioned
directly below the node in vertical trees, and similarly in other trees.
For example:

root

h i j k

\pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{

\TC*˜{h} \TC*˜{i} \TC*˜{j} \TC*˜{k}}

Note that there is no “long form” for this tree node label. However, you
can change the single character used to delimit the label with

\MakeShortTnput{char1}

If you find it confusing to use a single character, you can also use a
command sequence. E.g.,

\MakeShortTnput{\tnput}

Edge and node labels 45

You can have multiple labels, but each successive label is positioned
relative to the bounding box that includes the previous labels. Thus,
the order in which the labels are placed makes a difference, and not all
combinations will produce satisfactory results.

You will probably find that the tree node label works well for terminal
nodes, without your intervention. However, you can control the tree
node labels be setting several parameters.

To position the label on any side of the node (left, right, above or below),
set:

tnpos=l/r/a/b Default:

root

h i

\psframebox{%

\pstree{\Tc{3pt}˜[tnpos=a,tndepth=0pt]{root}}{

\TC*˜[tnpos=l]{h}

\TC*˜[tnpos=r]{i}}}

When you leave the argument empty, which is the default, PSTricks
chooses the label position is automatically.

To change the distance between the node and the label, set

tnsep=dim Default:

When you leave the argument empty, which is the default, PSTricks
uses the value of labelsep. When the value is negative, the distance is
measured from the center of the node.

When labels are positioned below a node, the label is given a minimum
height of

tnheight=dim Default: \ht\strutbox

Thus, if you add labels to several nodes that are horizontally aligned,
and if either these nodes have the same depth or tnsep is negative, and if
the height of each of the labels is no more than tnheight, then the labels
will also be aligned by their baselines. The default is \ht\strutbox, which
in most TEX formats is the height of a typical line of text in the current
font. Note that the value of tnheight is not evaluated until it is used.

The positioning is similar for labels that go below a node. The label is
given a minimum depth of

Edge and node labels 46

tndepth=dim Default: \dp\strutbox

For labels positioned above or below, the horizontal reference point of
the label, i.e., the point in the label directly above or below the center
of the node, is set by the href parameter.

When labels are positioned on the left or right, the right or left edge of
the label is positioned distance tnsep from the node. The vertical point
that is aligned with the center of the node is set by

tnyref=num Default:

When you leave this empty, vref is used instead. Recall that vref gives
the vertical distance from the baseline. Otherwise, the tnyref parameter
works like the yref parameter, giving the fraction of the distance from
the bottom to the top of the label.

18 Details

Both \pstree’s root node argument and successors argument are pro-
cessed as LR-boxes, and so everything in Appendix ??, including the
treatment of math and verbatim text, applies, except the following. Be-
cause \pstree has two arguments, you cannot use \pslongbox to define a
“long” version of \pstree. However, there is a variant \psTree of \pstree
whose syntax is:

\psTree{root node} successors \endpsTree

For example:

\psTree{\Tc{3pt}}

\TC*

\psTree{\Tc{3pt}}

\TC*

\TC*

\endpsTree

\TC*

\endpsTree

LaTEX purists can write \begin{psTree} and \end{psTree} instead.

PSTricks does a pretty good job of positioning the nodes and creating a
box whose size is close to the true bounding box of the tree. However,

Details 47

PSTricks does not take into account the node connections or labels when
calculating the bounding boxes, except the tree node labels.

If, for this or other reasons, you want to fine tune the bounding box of
the nodes, you can set the following parameters:

bbl=dim Default:
bbr=dim Default:
bbh=dim Default:
bbd=dim Default:
xbbl=dim Default:
xbbr=dim Default:
xbbh=dim Default:
xbbd=dim Default:

The x versions increase the bounding box by dim, and the others set the
bounding box to dim. There is one parameter for each direction from
the center of the node, left, right, height, and depth.

These parameters affect trees and nodes, and subtrees that switch direc-
tions, but not subtrees that go in the same direction as their parent tree
(such subtrees have a profile rather than a bounding box, and should be
adjusted by changing the bounding boxes of the constituent nodes).

Save any fiddling with the bounding box until you are otherwise finished
with the tree.

You can see the bounding boxes by setting the

showbbox=true/false Default: false

parameter to true. To see the bounding boxes of all the nodes in a tree,
you have to set this parameter before the tree.

In the following example, the labels stick out of the bounding box:

foo

left

bar

right

\psset{tpos=.6,showbbox=true}

\pstree[treemode=U]{\Tc{5pt}}{%

\TR{foo}ˆ{left}

\TR{bar}_{right}}

Here is how we fix it:

foo

left

bar

right

\psset{tpos=.6,showbbox=true}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt}}{%

\TR{foo}ˆ{left}

\TR{bar}_{right}}

Details 48

Now we can frame the tree:

foo

left

bar

right

\psframebox[fillstyle=solid,fillcolor=lightgray,framesep=14pt,

linearc=14pt,cornersize=absolute,linewidth=1.5pt]{%

\psset{tpos=.6,border=1pt,nodesepB=3pt}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%

\Tc[fillcolor=white,fillstyle=solid]{5pt}}{%

\TR*{foo}ˆ{left}

\TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of
the two terminal nodes.

You can also adjust the distance between successors with the

\tspace{dim}

command.

K4

\pstree{\Tc{3pt}}{%

\Tc*{2pt}%

\tspace{1cm}

\TR*{K_4}%

\Tc*{2pt}}

To skip levels, use

\skiplevel*[par]{nodes or subtrees}

\skiplevels*[par]{int} nodes or subtrees \endskiplevels

These are kind of like subtrees, but with no root node.

\pstree[treemode=R,levelsep=1.8,radius=2pt]{\Tc{3pt}}{

\skiplevel{\Tfan}

\pstree{\Tc{3pt}}{

\TC*

\skiplevels{2}

\pstree{\Tc{3pt}}{\TC* \TC*}

\TC*

\endskiplevels

\pstree{\Tc{3pt}}{

\TC*

\TC*}}}

Details 49

The profile at the missing levels is the same as at the first non-missing
level. You can adjust this with the bounding box parameters. You
get greatest control if you use nested \skiplevel commands instead of
\skiplevels.

\large

\psset{radius=6pt, dotsize=4pt}

\pstree[thislevelsep=0,edge=none,levelsep=2.5cm]{\Tn}{%

\pstree{\TR{Player 1}}{\pstree{\TR{Player 2}}{\TR{Player 3}}}

\psset{edge=\ncline}

\pstree

{\pstree[treemode=R]{\TC}{\Tdot ˜{(0,0,0)} ˆ{N}}}{%

\pstree{\TC[name=A] ˆ{L}}{%

\Tdot ˜{(-10,10.-10)} ˆ{l}

\pstree{\TC[name=C] _{r}}{%

\Tdot ˜{(3,8,-4)} ˆ{c}

\Tdot ˜{(-8,3,4)} _{d}}}

\pstree{\TC[name=B] _{R}}{%

\Tdot ˜{(10,-10.0)} ˆ{l}

\pstree{\TC[name=D]_{r}}{%

\Tdot ˜{(4,8,-3)} ˆ{c}

\Tdot ˜{(0,-5,0)} _{d}}}

}}

\ncbox[linearc=.3,boxsize=.3,linestyle=dashed,nodesep=.4]{A}{B}

\ncarcbox[linearc=.3,boxsize=.3,linestyle=dashed,

arcangle=25,nodesep=.4]{D}{C}

Details 50

Player 1

Player 2

Player 3

• (0,0,0)
N

L

•
(-10,10.-10)

l r

•
(3,8,-4)

c

•
(-8,3,4)

d

R

•
(10,-10.0)

l r

•
(4,8,-3)

c

•
(0,-5,0)

d

Details 51

	0 Dots, Arrowheads, Lines, and Boxes
	1 Dots
	2 Arrowheads and such
	3 Lines and polygons
	4 Framed boxes
	5 Obsolete put commands

	I Nodes and Node Connections
	6 Nodes
	7 Node connections
	8 Node connections labels: I
	9 Node connection labels: II
	10 Attaching labels to nodes
	11 Mathematical diagrams and graphs
	12 Obsolete put commands

	II Trees
	13 Overview
	14 Tree Nodes
	15 Trees
	16 Edges
	17 Edge and node labels
	18 Details

