| [ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Índice] | [ ? ] |
Inicie o Maxima com o comando "maxima". Maxima mostrará a informação de versão e uma linha de comando. Termine cada comando Maxima com um ponto e vírgula. Termine uma sessão com o comando "quit();". Aqui está um exemplo de sessão:
[wfs@chromium]$ maxima
Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 19a
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) factor(10!);
8 4 2
(%o1) 2 3 5 7
(%i2) expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6
(%o2) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i3) factor (x^6 - 1);
2 2
(%o3) (x - 1) (x + 1) (x - x + 1) (x + x + 1)
(%i4) quit();
[wfs@chromium]$
Maxima pode procurar as páginas info. Use o comando describe para mostrar
informações sobre o comando ou todos os comandos e variáveis contendo
uma seqüência de caracteres.
O ponto de interrogação ? (busca exata) e o duplo ponto de interrogação ??
(busca inexata) são abreviações para describe:
(%i1) ?? integ
0: Functions and Variables for Elliptic Integrals
1: Functions and Variables for Integration
2: Introduction to Elliptic Functions and Integrals
3: Introduction to Integration
4: askinteger (Functions and Variables for Simplification)
5: integerp (Functions and Variables for Miscellaneous Options)
6: integer_partitions (Functions and Variables for Sets)
7: integrate (Functions and Variables for Integration)
8: integrate_use_rootsof (Functions and Variables for Integration)
9: integration_constant_counter (Functions and Variables for Integration)
10: nonnegintegerp (Functions and Variables for linearalgebra)
Enter space-separated numbers, `all' or `none': 5 4
-- Function: integerp (<expr>)
Returns `true' if <expr> is a literal numeric integer, otherwise
`false'.
`integerp' returns false if its argument is a symbol, even if the
argument is declared integer.
Examples:
(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false
(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false
-- Function: askinteger (<expr>, integer)
-- Function: askinteger (<expr>)
-- Function: askinteger (<expr>, even)
-- Function: askinteger (<expr>, odd)
`askinteger (<expr>, integer)' attempts to determine from the
`assume' database whether <expr> is an integer. `askinteger'
prompts the user if it cannot tell otherwise, and attempt to
install the information in the database if possible. `askinteger
(<expr>)' is equivalent to `askinteger (<expr>, integer)'.
`askinteger (<expr>, even)' and `askinteger (<expr>, odd)'
likewise attempt to determine if <expr> is an even integer or odd
integer, respectively.
(%o1) true
Para usar um resultado em cálculos posteriores, você pode atribuir esse valor a uma variável ou referir-se a esse mesmo valor através de seu rótulo gerado automaticamente. Adicionalmente, % refere-se ao mais recente resultado calculado:
(%i1) u: expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6
(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (u, x);
5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) factor (%o2);
5
(%o3) 6 (y + x)
Maxima tem conhecimento sobre números complexos e constantes numéricas:
(%i1) cos(%pi); (%o1) - 1 (%i2) exp(%i*%pi); (%o2) - 1
Maxima pode fazer cálculos diferenciais e integrais:
(%i1) u: expand ((x + y)^6);
6 5 2 4 3 3 4 2 5 6
(%o1) y + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y + x
(%i2) diff (%, x);
5 4 2 3 3 2 4 5
(%o2) 6 y + 30 x y + 60 x y + 60 x y + 30 x y + 6 x
(%i3) integrate (1/(1 + x^3), x);
2 x - 1
2 atan(-------)
log(x - x + 1) sqrt(3) log(x + 1)
(%o3) - --------------- + ------------- + ----------
6 sqrt(3) 3
Maxima pode resolver sistemas lineares e equações cúbicas:
(%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);
7 a - 52 25
(%o1) [x = --------, y = -------]
3 a - 8 3 a - 8
(%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
(%o2) [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]
Maxima pode resolver sistemas de equações não lineares. Note que se você não quer um resultado impresso, você pode encerrar seu comando com $ em lugar de encerrar com ;.
(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);
3 sqrt(5) + 7 sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------],
2 2
3 sqrt(5) - 7 sqrt(5) - 3
[y = -------------, x = - -----------]]
2 2
Maxima pode gerar gráficos de uma ou mais funções:
(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);
3 sqrt(5) + 7 sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------],
2 2
3 sqrt(5) - 7 sqrt(5) - 3
[y = -------------, x = - -----------]]
2 2
(%i4) kill(labels);
(%o0) done
(%i1) plot2d (sin(x)/x, [x, -20, 20]);
(%o1)
(%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5]);
(%o2)
(%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2), [x, -12, 12], [y, -12, 12]);
(%o3)
| [ << ] | [ >> ] | [Top] | [Contents] | [Índice] | [ ? ] |
This document was generated by Robert Dodier on Abril, 1 2014 using texi2html 1.76.