
Open Advanced Process Control

Software Development Kit
Developers Manual

Version 5.4

(c) 2008-2018 by OpenAPC Project Group

1

Table Of Contents
1 General.. 4

1.1 Disclaimer.. 4
1.2 Overview.. 4
1.3 Feedback and Contributions..4
1.4 Contents of the SDK.. 4

2 Programming Interfaces... 5
2.1 Flow plug-in Interface.. 5

2.1.1 General Usage... 5
2.1.2 Plug-In Instances... 6
2.1.3 Loading and Saving Configurations...6
2.1.4 Function Description..6
2.1.5 BeamConstruct-specific Functions and Structures..16

2.2 HMI plug-in Interface... 21
2.2.1 General Usage... 21
2.2.2 Plug-In Instances... 22
2.2.3 Loading and Saving Configurations...22
2.2.4 Dependencies.. 22
2.2.5 Function Description.. 22

2.3 Error Codes... 27
2.4 Binary Data Handling and Structures...29

2.4.1 Using of Binary Data Blocks..29
2.4.2 Binary Data related Structures and Definitions..30

2.4.2.1 Data-Type Dependent Parameter Usage..31
2.4.2.2 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRL...36
2.4.2.3 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRLEND.................................37
2.4.2.4 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_MOTIONCTRL...........................38
2.4.2.5 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_LASERCTRL.............................38
2.4.2.6 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_BITMAP.....................................39
2.4.2.7 Binary Data Structures OAPC_BIN_SUBTYPE_STRUCT_OUTPUTCTRL,
OAPC_BIN_SUBTYPE_STRUCT_WAITINPUTCTRL and
OAPC_BIN_SUBTYPE_STRUCT_INPUTCTRL...40
2.4.2.8 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_SCANHEADINFO......................41
2.4.2.9 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_POS_CORR..............................42
2.4.2.10 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_DYNGEOMSTART..................43

2.5 Configuration XML Structure..43
2.5.1 The Symbol Image for the Flow Editor...44
2.5.2 Dialogue Layout and Parameter Definitions...44
2.5.3 Tab Pane Types.. 45
2.5.4 Input Fields.. 45

2.5.4.1 Text Input Fields.. 46
2.5.4.2 Integer Input Fields..46
2.5.4.3 Floating Point Number Input Fields..47
2.5.4.4 Combo Box Fields...47
2.5.4.5 Colour Chooser Button..48
2.5.4.6 Font Chooser Button..48
2.5.4.7 Check Box... 49
2.5.4.8 File Load Selection..49
2.5.4.9 File Save Selection..50
2.5.4.10 Select Directory... 50

2.5.5 Param-Panel Fields... 51
2.5.6 Help-Panel Fields.. 51

2.5.6.1 Input Connection Tags...52
2.5.6.2 Output Connection Tags..52

2.5.7 Example... 52
2.6 Developing own plug-ins.. 53

3 Localisation.. 53

2

3.1 Working Principle... 53
3.2 Choosing the Correct Translation File Name...54
3.3 Translating the Applications... 54
3.4 Creating own Translations... 55

4 ControlRoom Interface... 56
4.1 Overview.. 56
4.2 Data Flow... 56
4.3 Example Applications.. 57
4.4 Interface Implementations.. 57

4.4.1 Java ControlRoom Interface..57
4.4.1.1 The Interface OAPCListener..58
4.4.1.2 The Class OAPCInterface...58
4.4.1.3 The Class SocketEntry..60

4.4.2 C/C++ and other languages ControlRoom Interface..60

5 Interlock Server Connection... 61
5.1 Data Flow... 61
5.2 Example Applications.. 61
5.3 Interface Implementations.. 62

5.3.1 Java Interlock Server Interface..62
5.3.1.1 The Interface OAPCIServerListener..62
5.3.1.2 The Class OAPCIServer..63
5.3.1.3 The Class IServerData..65

5.3.2 C/C++ and other languages Interlock Server Interface..66
5.3.3 Instruction List Interlock Server Interface...66
5.3.4 LUA Interlock Server Interface...66

6 Shared Library liboapc... 67
6.1 TCP/IP Related Functions of liboapc...67
6.2 Serial Interface Functions of liboapc..69
6.3 Utility-Functions of liboapc... 72

6.3.1 Ring Buffer Utility Functions of liboapc..74
6.4 Thread-Functions of liboapc..75
6.5 Dynamic Library Functions of liboapc..77
6.6 ControlRoom-Interface-Functions of liboapc..77
6.7 Interlock Server Access Functions of liboapc..80

7 Shared Library liboapcwx... 84
7.1 Canvas-Functions of liboapcwx...84
7.2 Unicode-Functions of liboapcwx..85
7.3 Path-Functions of liboapcwx..85

8 Shared Library libsmartfactory... 87
8.1 Hermes related functions of libsmartfactory...87
8.2 Smart Interface related functions of libsmartfactory...91

3

1 General

1.1 Disclaimer

This specification and the related sources are distributed in the hope that they will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. All the information given here and within the source code, the interface
description and definitions are subject to change without notice. Errors and omissions excepted.

1.2 Overview

The OpenAPC software components offer programming interfaces that are open and can be used from 3 rd
parties for implementing their own functionalities. Following these open interfaces are specified so that it is
possible to use them conform to the functionality of the main software.

The external plug-ins that can be written using these information are nothing more than a shared library
(.DLL on windows, .so on Linux) that provide several predefined functions to the main application. The main
application itself will call these exported functions in a predefined manner in order to include them into the
program flow. Conform to the OSI layer model the communication is done only between the main application
and the plug-in, it is not allowed for a plug-in to interact with the user directly.

Beside of that it is also possible to change the language and texts of the application easily. Here no
programming is necessary and no advanced technical skills are required. There is only a small set of rules
that have to be fulfilled to localise the application successfully.

1.3 Feedback and Contributions

If you extend the application either by external plug-ins or by translation files – or by whatever else is useful
for you – and if you want to share your work with others, you can contribute it to us. If your extensions or
modifications look useful to us, if you agree that we will include it into the standard software package, so that
everybody is able to use it easily and without the need to install additional files or packages we will be happy
to make your work become a part of the OpenAPC software package.

PLEASE NOTE: When you send us your data you fully hand over the copyright to us with no limitations. That
means we can use it within our application using our licensing models. You also will not be able to withdraw
your data, once you gave us the right to use your data you cannot revoke that. Of course we will show your
name or your companies name within the credits when you contribute data to us and will provide the data for
free as part of our source distribution (except you don't want to have your sources published but want to
provide them to us so that we can distribute your work in binary form – where this is possible).

PLEASE NOTE: Plug-ins are accepted as source code only. Here the same is true like for all other data: by
sending your data you give us the non-revocable right to use them freely according to our needs and with no
limitations.

1.4 Contents of the SDK

The OpenAPC SDK (Software Development Kit) package contains example data and sources related to the
following documentation.

4

Following folders are contained within the SDK:

– interface – here interface implementations and example applications to connect to other applications are
contained; within this directory an example project file can be found that can be used to access external
OpenAPC Interface implementations, examples of such implementations are provided in Java and C

– iserver – this directory contains examples about how the Interlock Server can be accessed from own
applications or scripts; within this directory an example project file can be found that can be controlled
via the Interlock Server; the related controlling scripts in LUA and IL and a C example is also provided

– plugins – this folder contains example Flow and HMI plug-ins as described below; the plug-ins
contained there are part of the standard software package; here also the header file “oapc_libio.h” is
contained that is required for programming own plug-ins

– liboapc – the sources of the shared library “liboapc” and the header file “liboapc.h” that is required when
the functions/definitions of this header file have to be used

– translations – this folder provides several files that can be used as starting point for own translations

2 Programming Interfaces

2.1 Flow plug-in Interface

The Flow plug-in programming interface can be used to create own shared libraries that act as flow control
elements within the software. Such plug-ins can be added and edited within the Flow Editor and can

– implement logic flow functions

– access real hardware

– retrieve data from different sources

– ...and other things more

The programming interface itself consists of a set of function calls that have to be provided by the shared
library which implements the plug-in functionality. These functions are called by the software (ControlRoom
or BeamConstruct) in order to offer comfortable configuration possibilities to the user and to do their job
when a project is executed. Following all these functions and the related constants and defines are
described. The related function prototypes and defines can be found within a header file “oapc_libio.h“
that is part of the OpenAPC SDK.

Such a plug-in that is related to the Flow Editor only has to be placed in sub-folder “flowplugins” of the
software packages installation.

2.1.1 General Usage

An Flow-plug-ins shared library is used in two contexts: in configuration mode within the editor and in
execution mode within the player or debugger.

In configuration mode only some administrative tasks are done, here mainly a configuration description in
XML is fetched from the library, the applications Flow Editor converts it, displays a comfortable configuration
dialogue and sends the (modified) data back to the library. Beside of that a possibility is given where the
software requests the configuration data from the library in order to store them within a common project file.
So the plug-in itself does not have to take care about any configuration files or locations.

In execution mode the software asks the library to initialise at application start-up, sends data to it, fetches
new data from it and requests a de-initialisation at the end. Here when the main application sets a value to
the plug-in and afterwards fetches the returned value resulting from the preceding operation both calls to the
plug-in have to last less than 50 msec in order to guarantee a smooth flow of the total application. This fact

5

can be checked using the OpenDebugger, here an error message is printed whenever both calls together
need more than this time limit. It is important not to exceed that limit because within the OpenPlayer such
plug-ins will be rejected and no longer used once they take more time than allowed.

In both modes functions are used that create and delete a new instance of that plug-in and where the
software sends formerly saved configuration data to the library so that it can work using these settings.

2.1.2 Plug-In Instances

Whenever the user decides to use an external plug-in the shared library is loaded in order to be used. When
a user wants to use the same plug-in again but with other data, the same already loaded shared library is
used. Resulting from that standard working principle of shared libraries every use of it requires a separate
instance using its own set of data. This set of data can be defined by the plug-in freely, there are no
regulations except the fact that these data need to have a structure, that gives the possibility to reduce them
to a void-pointer that can be handled by the main application. So from the main applications point of view
these instance data are ignored fully, it only stores this pointer.

The usage of the instance mechanism is quite simple. As very first function of the plug-in the main
application calls oapc_create_instance2(). Here the plug-in should allocate a memory area where all
locally used data can be stored into. This memory area should hold a fixed structure that contains all global
variables the plug-in needs to do its job and the pointer to that memory area has to be returned at the end of
this function.

Now whenever the main application calls a function of the library, it hands over the pointer to that memory
area so that the plug-in is able to access these data and to work according to the context it is used within.

When a plug-in is no longer used, as very last function oapc_delete_instance() is called handing over
the pointer to the memory area again. Now the plug-in hasn't to do any more than releasing that memory
area and all other resources that might be somehow related to this instance of the plug-in.

2.1.3 Loading and Saving Configurations

As stated above a plug-in library does not need to store configuration data for its own. That's something that
is done by the main software completely. Here two functions are used by the main application to get the data
that have to be saved within a project file and to set the data have been loaded out of an project file:
oapc_get_save_data() and oapc_set_load_data().

For both one thing is important: all the OpenAPC software components are portable and available for many
different platforms. So a project file can be written on one system and will be read and used on a completely
different hardware platform and operating system. In case these systems use CPUs with a different byte-
order the project files would be incompatible if no further actions are taken.

To avoid that problem all data types with a length greater than 8 bit have to be converted to network byte
order before they are handed over to the main software. And vice versa if data are given to the plug-in they
have to be converted back to host byte order. That method ensures that the project files are portable and the
data are readable on every hardware platform.

Such a conversion can be done e.g. with the standard functions htons() and ntohs() for 16 bit integer
data types and with htonl() and ntohl() for 32 bit integer data types. For more information please refer
to related documentations about “endianness” and “network byte order”. Floating point data types should not
be stored, they are platform-dependent and their internal structure may not be portable. Therefore they
should be replaced by alternative, whole-numbered data when they have to be stored.

2.1.4 Function Description

6

Following the functions are described that have to be provided by a shared library in order to act as an flow
plug-in correctly. For the exact data types and prototype definitions please use the related header file
“oapc_libio.h” out of the OpenAPC SDK.

The naming of the functions is done from the main applications point of view. So a function oapc_get_.will
be called by the main application to get something from the shared library, a function oapc_set_ will be
called to hand over something from the main application to the plug-in.

Some of the functions do not have to be provided by the plug-in in case they are not used, others are
mandatory. Within the following description all these functions are mandatory for a plug-in, where no explicit
information is given that they can be dropped.

unsigned long oapc_get_capabilities()

This function is called by the main application. It returns information about the possibilities and
capabilities of the plug-in. Depending on what is sent back from this function the main application knows how
to handle this library and what it is useful for. The capabilities of the library are specified by a set of OR-
concatenated flags that have to be returned by this function call:

– OAPC_HAS_INPUTS – the library has inputs and expects data from the main application

– OAPC_HAS_OUTPUTS – the library has outputs and expects that the main application fetches the related
data

– OAPC_HAS_XML_CONFIGURATION – the plug-in requires custom configuration, the configuration
information and default data can be provided by a XML structure; for a description of the allowed XML-
tags please refer below

– OAPC_HAS_LOG_TYPE_DIGI – this flag causes actions on main application side, when it is set the
standard object definition dialogue is extended by a logging configuration panel for digital data; this flag
applies to all digital outputs, to HMI plug-ins only and does not have any effect for flow plug-ins. Several
flags of type OAPC_HAS_LOG_TYPE_xxx can't be combined, a plug-in can use exactly one of them
exclusively.

– OAPC_HAS_LOG_TYPE_INTNUM – this flag causes actions on main application side, when it is set the
standard object definition dialogue is extended by a logging configuration panel for whole-numbered
data; this flag applies to all numerical outputs, to HMI plug-ins only and does not have any effect for flow
plug-ins. It is not allowed to combine more than one flags of type OAPC_HAS_LOG_TYPE_xxx, a plug-in
can use exactly one of them exclusively

– OAPC_HAS_LOG_TYPE_FLOATNUM – this flag causes actions on main application side, when it is set the
standard object definition dialogue is extended by a logging configuration panel for floating-point
numerical data automatically. This flag applies to all numerical outputs, to HMI plug-ins only and does
not have any effect for flow plug-ins. Several flags of type OAPC_HAS_LOG_TYPE_xxx can't be
combined, a plug-in can use exactly one of them exclusively.

– OAPC_HAS_LOG_TYPE_CHAR – this flag causes actions on main application side, when it is set the
standard object definition dialogue is extended by a logging configuration panel for text data. This flag
applies to all character outputs, to HMI plug-ins only and does not have any effect for flow plug-ins.
Several flags of type OAPC_HAS_LOG_TYPE_xxx can't be combined, a plug-in can use exactly one of
them exclusively.

– OAPC_ACCEPTS_PLAIN_CONFIGURATION – this capability constant corresponds to
OAPC_HAS_XML_CONFIGURATION, it specifies that the data configured by the user have to be returned
in plain format using function oapc_set_config_data();
PLEASE NOTE: at the moment this is the only possibility to get back configuration information, so this
capability flag has to be set and the related function call oapc_set_config_data() has to be
provided

– OAPC_ACCEPTS_IO_CALLBACK – this flag corresponds to the outputs of the plug-in that transmit their
data to the main application (or to be more exact: where the main application fetches the data from). If
this flag is not set and if a plug-in defines outputs, they are polled periodically. The polling time can be
specified within the application in this case, here all flow configuration dialogues automatically gets an
own input field where the desired time can be entered. When this flag is set, no polling is performed and

7

the related input fields for the polling cycle time are hidden. In this case the main application hands over
a function pointer to the plug-in using the function oapc_set_io_callback() (please refer below).
That function pointer can be used as callback to inform the main application that something has changed
that results in modified output states/values.

– OAPC_USERPRIVI_DISABLE and OAPC_USERPRIVI_HIDE – can be used for HMI plug-ins only; if at
least one of both flags is set the user privilege panel is available within the HMI object property dialogue
of this plug-in; there a visibility mode can be chosen that depends on the privileges of a user. There is no
capability flag for a enabled element or the special state “ignore”, both exist in every case whenever a
HMI element can be modified depending on the privileges of a user. When flags
OAPC_USERPRIVI_DISABLE is set, the related plug-in can be set to disabled (but visible), when
OAPC_USERPRIVI_HIDE is set, the HMI element can be made invisible

– OAPC_IS_DEPRECATED marks an plug-in as outdated, this means the related plug-in is no longer visible
within the context menus of Flow Editor or HMI Editor but still accessible so that old project files that use
this plug-in continue working. By setting this flag it is avoided that this plug-in is used in new projects
again.

– OAPC_ACCEPTS_WRITE_DATA_MODE – this flag informs the main application about the plug-ins
possibility to write some data (e.g. data for stand-alone mode operations). When this capability flag is set
the instance of a plug-in can be created using mode OAPC_INSTANCE_WRITE_DATA. In this case the
plug-in has not to access its hardware directly but has to write the data to the path specified by
parameter oapc_write_data_path (please refer to description of function
oapc_set_config_data())

– OAPC_ACCEPTS_SEND_DATA_MODE – this flag informs the main application about the plug-ins possibility
to send some data to it (e.g. data for stand-alone mode operations). When this capability flag is set the
instance of a plug-in can be created using mode OAPC_INSTANCE_SEND_DATA. In this case the plug-in
has not to control its hardware directly but has to send the data to it (e.g. for later usage from device-
internal memory). This flag has to be used in cases where such data are anonymous/exclusive and can't
be identified by some additional identifier.

– OAPC_ACCEPTS_SEND_NAMED_DATA_MODE – this flag informs the main application about the plug-ins
possibility to send some data to it (e.g. data for stand-alone mode operations). When this capability flag
is set the instance of a plug-in can be created using mode OAPC_INSTANCE_SEND_NAMED_DATA. In
this case the plug-in has not to control its hardware directly but has to send the data to it (e.g. for later
usage from device-internal memory). Comparing to OAPC_ACCEPTS_SEND_DATA_MODE this variant has
to be used when the data to be sent have to be identified by a (unique) name.

Beside of that there is an additional flag set that behaves slightly different. This flag set contains definitions to
which category this plug-in belongs to and within which sub menu of the Flow Editor it is listed. Here exactly
one of the following category flags has to be OR-concatenated with the capabilities described above:

– OAPC_FLOWCAT_CONVERSION – category “Data Conversion”, it has to be set when the plug-in mainly
performs some kind of conversion between different data formats or types

– OAPC_FLOWCAT_LOGIC – category “Logic Operations”, it has to be used for plug-ins that combine data
logically

– OAPC_FLOWCAT_CALC – category “Mathematical Calculations”, assign it to plug-ins that do some
calculations

– OAPC_FLOWCAT_FLOW – category “Flow Control”, use this category flag when a plug-in somehow
influences the flow of data

– OAPC_FLOWCAT_IO – category “Input/Output Operations”, whenever a plug-in accesses external
devices and sends data to them or receives data from them this category has to be used. This category
does not include plug-ins that control motors or perform any other kind of motion, there the special
category flag OAPC_FLOWCAT_MOTION has to be used

– OAPC_FLOWCAT_DATA – category “Data”, to be used whenever any kind of data are
handled/stored/managed but without sending them to or receiving them from external devices

– OAPC_FLOWCAT_MOTION – category “Motion”, to be used whenever a plug-in controls a device which

8

causes any kind of motion (like motor controllers, XY-tables or robots)

– OAPC_FLOWCAT_LASER – category “Laser”, to be used for all kinds of laser-processing related plug ins
(like scanner controller plug-ins, laser controllers, plug-ins for accessing laser-related software)

If no category flag is specified or in case an illegal/unknown flag is set the appropriate plug-in will be listed in
section “Miscellaneous”.

Parameters: none

Return value: the capability flags, please see above

Remarks: Independent from the capability flags specified here all functions described below have to be
provided by the shared library. The ones that are not used for a meaningful operation of the plug-in simply
have to return OAPC_ERROR_NOT_SUPPORTED instead of any operation.

This function is called in both, configuration and execution mode

char *oapc_get_name()

This function is called by the main application in order to get a short, descriptive name that is used
within the application to identify this plug-in. The name has to be returned in non-UTF 8 bit Latin-1 ASCII
characters that are terminated by a 0. It is recommended to give an English name in every case and to
provide the localised name via the application-internal localisation mechanism.

Parameters: none

Return value: the name of the plug-in

Remarks: this function is called in both, configuration and execution mode

unsigned long oapc_get_input_flags()

In case the OAPC_HAS_INPUTS capability bit is set the main application calls this function in order to
get information how many inputs of which type are supported by this plug-in. It is possible to define up to 8
inputs with numbers 0..7. Every input can exist exactly once and can have only one data type. Overlapping
definitions of more than one data type for the same input are not allowed and will lead to an undefined
behaviour. According to these rules following OR-concatenated flags can be returned:

– OAPC_DIGI_IO0 .. OAPC_DIGI_IO7 – definition of digital data types for inputs 0..7

– OAPC_NUM_IO0 .. OAPC_NUM_IO7 – definition of numerical data types for inputs 0..7

– OAPC_CHAR_IO0 .. OAPC_CHAR_IO7 – definition of character data types for inputs 0..7

– OAPC_BIN_IO0 .. OAPC_BIN_IO7 – definition of binary data types for inputs 0..7

Digital data can have exactly two states 0 or 1. Numerical data types are a 32 bit floating point number
internally, depending on their purpose they can be used for handling integers too. Char data types are texts
or single characters. Binary data types are some kind of BLOBs that consist of a standardised header and
the binary payload. Details about how such data have to be created, structured ans handled are given below.

Parameters: none

Return value: a list of OR-concatenated flags that specify which inputs are provided, for a description of the
flags please see above

Remarks: this function is called in both, configuration and execution mode

unsigned long oapc_get_output_flags()

In case the OAPC_HAS_OUTPUTS capability bit is set the main application calls this function in order
to get information how many outputs of which type are supported by this plug-in. It is possible to define up to
8 outputs with numbers 0..7. Every output can exist exactly once and can have only one data type.
Overlapping definitions of more than one data type for the same output are not allowed and will lead to an
undefined behaviour.

9

Parameters: none

Return value: a list of OR-concatenated flags that specify which outputs are provided, for a description of the
flags and the available data types please refer to the description of oapc_get_input_flags()

Remarks: this function is called in both, configuration and execution mode

void* oapc_create_instance()

This function is deprecated and should not be used any longer. Support for it will be removed in
future versions. For a replacement please refer to oapc_create_instance2().

void* oapc_create_instance2(unsigned long flags)

Whenever the user selects a plug-in for usage within the application or whenever a plug-in is used
by the current project, as very first this function is called. Here the plug-in has to allocate a memory area for
an internally used structure to hold all global data that are used by that plug-in.

Parameters: flags – usage flag that informs how the plug-in has to be configured
OAPC_INSTANCE_OPERATION – normal operation, the plug-in is used in standard mode
OAPC_INSTANCE_SIMULATION – simulated mode; this option is important for plug-ins that
use specific hardware, when this option is set, the (possibly not available) hardware has not
to be accessed but data handling has to be simulated. That means data that would be
received by hardware has to be generated, reactions on input data has to be simulated. This
mode is useful when setting up a project without all devices available, here such a project
can be tested in some kind of dry run.
OAPC_INSTANCE_MINIMUM_INIT – this initialisation mode corresponds to function
oapc_read_pvalue(); when this flag is set it means the initialisation of the plug-in is done
in order to call this function afterwards and to read some special values. Depending on
which values are read and how they are used during normal initialisation this information can
be used by the plug-in to perform a partial initialisation only, e.g. In order to not to overwrite
the value that has to be read by some other, default values.
OAPC_INSTANCE_WRITE_DATA – the plug-in is used in an operation mode where it has to
write data to disk (e.g .stand-alone data) instead of accessing a device directly. This mode
corresponds to capability flag OAPC_ACCEPTS_WRITE_DATA_MODE.

Return value: a pointer to the memory area, this pointer is handed over back to the plug-in during every
relevant function call where these data may be required in order to perform the plug-ins task using a specific
set of parameters.

Remarks: These data are not stored within the project file automatically

void oapc_delete_instance(void* instanceData)

When a plug-in is unloaded because it is no longer needed or because the application terminates,
this function is called as very last one once for every instance that was created for a plug-in. Here the pointer
to the private memory area of the plug-in is handed over again so that this memory area can be released.

Parameters: instanceData – the memory to be released

Return value: none

Remarks: none

char *oapc_get_config_data(void* instanceData)

If there is the capability flag OAPC_HAS_XML_CONFIGURATION returned from
oapc_get_capabilities() to the main application that specifies custom configuration possibilities for a
plug-in, this function has to be provided by the library to send a configuration description to the main
application

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

10

Return value: a description of the custom configuration that is used by the main application in order to create
and display a configuration dialogue; at the moment only a XML configuration is supported, for a description
of the allowed XML tags please refer to the following sections

Remarks: this function is called in configuration mode only

void oapc_set_config_data(void* instanceData,char *name,char *value)

This function (without the “const” modifier) is deprecated and should not be used any longer. It will
be removed in future software versions. Please refer to oapc_set_config_data() below.

void oapc_set_config_data(void* instanceData,const char *name,const char *value)

This function is called by the main application to return the (possibly modified) parameters of the
application back to the plug-in.
PLEASE NOTE: at the moment the configuration data can be returned only in plain mode, so this function
accepts only pairs of name and value. In case a plug-in handles more than one parameter this function is
called repeatedly.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

name – pointer to a char-array where the name of the parameter is stored into according to the names
defined within the XML description

value – a pointer to a char array where the value is stored that is assigned to the parameter with the given
name; in case the parameter expects a numerical value a conversion from string to integer or from string to
float has to be done by the library

Return value: none, the results are stored within the memory areas handed over as function parameters

Remarks: This function is called in configuration mode only. The value returned in name is equal to the
parameter names within the XML configuration structure. Beside of that there are predefined names that
belong to general parameters set by the main application:

– oapc_cycletime – when a plug-in doesn't uses a callback function for submitting changed data
the outputs are polled cyclically (capability flag OAPC_ACCEPTS_IO_CALLBACK not set). In this case
the polling cycle time (in milliseconds) is returned together with this parameter.

– oapc_write_data_path – specifies the path data have to be written to, this parameter
corresponds to capability flags OAPC_ACCEPTS_WRITE_DATA_MODE and instance creation mode
OAPC_INSTANCE_WRITE_DATA

char *oapc_get_save_data(void *instanceData,unsigned long *length)

This function is called by the main application whenever a project file has to be saved: it requests a
bunch of data from the plug-in to store them within the project file. The format of the data is not defined, the
application handles them as anonymous array of bytes. Therefore a plug-in can organise them as desired.

PLEASE NOTE: to keep project files portable and platform independent all used data types with a length
greater than 8 bit have to be converted to network byte order before they are given to the main application.
That ensures that they are stored in a portable and endianness-independent way so that they can be loaded
successfully also with completely different processor architectures.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

length – a pointer to a variable where the total number of bytes of the configuration data have to be stored
into; this length defines the size of the configuration data

Return: an array of bytes with the given length that has to be stored within a project file

Remarks: this function is called in configuration mode only

void oapc_set_loaded_data(void *instanceData,unsigned long length,char *data)

11

Whenever a project file is loaded the main application calls this function in order to hand over the
custom configuration data out of that project file to the related plug-in. After loading a conversion back from
network to host byte order has to be done by the plug-in in order to bring the relevant data types back into
the correct format for this platform. In execution mode this function is called before oapc_init() is
requested by the main application.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

length – the number of bytes the loaded dataset consists of

data – a pointer to a byte array with the given length where the loaded data are stored into

Return value: none

Remarks: this function is called in both, configuration and execution mode

unsigned long oapc_init(void *instanceData)

This function is called after possibly existing configuration data have been handed over and before a
library is used by setting inputs / retrieving output data. When this function is called, a plug-in has to perform
all operations that are necessary in order to provide its desired functionality.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

Return value: OAPC_OK or an OAPC_ERROR_... error code that informs the main application about the
initialization state; in case of an error this library will not be used any longer. For a description of available
error codes please refer below

Remarks: this function is called in execution mode only

unsigned long oapc_exit(void *instanceData)

When the main application is exited, this function is called. It gives a plug-in the possibility to de-
initialise and to release used resources.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

Return value: OAPC_OK or an OAPC_ERROR_... error code; currently the return value is ignored because an
error during releasing resources sound somehow pointless, therefore it is recommended to return OAPC_OK

Remarks: This function is called in execution mode only. It should NOT be used to release the memory area
of instanceData, this has to be done during an additional call to oapc_delete_instance().

unsigned long oapc_set_digi_value(void *instanceData,unsigned long
input,unsigned char value)

This function is called during operation when the OAPC_HAS_INPUTS capability and at least one
OAPC_DIGI_IOx input flag was set. It is called as soon as there is a data flow within the main application
that sets a new digital value for an input.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

input - the number of the input in range 0..7 where a new value has to be set

value – the new value 0 or 1 that is set for that input

Return value: OAPC_OK if the new value could be set successfully or an error code according to the list below

Remarks: this function is called in execution mode only; when no such input type is provided by a plug-in this
function does not need to be implemented

unsigned long oapc_get_digi_value(void *instanceData,unsigned long
output,unsigned char *value)

This function is called during operation when the OAPC_HAS_OUTPUTS capability and at least one

12

OAPC_DIGI_IOx output flag was set. It is called from the main application to get new data that might be
available at this output.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

output - the number of the output in range 0..7 where a new value is fetched from by the main application

value – pointer to a variable where the new value 0 or 1 has to be stored into

Return value: OAPC_OK if the new value could be retrieved successfully,
OAPC_ERROR_NO_DATA_AVAILABLE if no new data are available or an error code according to the list
below

Remarks: A value has to be returned to the main application only in case it has really changed or in case the
currently available value is really a new one. The plug-in has to avoid that the same value is given to the
main application twice without any reason.

This function is called in execution mode only. When no such output type is provided by a plug-in this
function does not need to be implemented.

unsigned long oapc_set_num_value(void *instanceData,unsigned long input,float
value)

This function is called during operation when the OAPC_HAS_INPUTS capability and at least one
OAPC_NUM_IOx input flag was set. It is called as soon as there is a data flow within the main application that
sets a new numerical value for an input.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

input - the number of the input in range 0..7 where a new value has to be set

value – the new 32 bit floating point value that is set for that input

Return value: OAPC_OK if the new value could be set successfully or an error code according to the list below

Remarks: this function is called in execution mode only; when no such input type is provided by a plug-in this
function does not need to be implemented

unsigned long oapc_get_num_value(void *instanceData,unsigned long output,float
*value)

This function is called during operation when the OAPC_HAS_OUTPUTS capability and at least one
OAPC_NUM_IOx output flag was set. It is called from the main application to get new data that might be
available at this output.

Parameters:

instanceData – pointer to the memory area that belongs to this instance of the plug-in

output - the number of the output in range 0..7 where a new value is fetched from by the main application

value – pointer to a variable where the new 32 bit floating point value has to be stored into

Return value: OAPC_OK if the new value could be retrieved successfully,
OAPC_ERROR_NO_DATA_AVAILABLE if no new data are available or an error code according to the list
below

Remarks: A value has to be returned to the main application only in case it has really changed or in case the
currently available value is really a new one. The plug-in has to avoid that the same value is given to the
main application twice without any reason.

This function is called in execution mode only. When no such output type is provided by a plug-in this
function does not need to be implemented.

unsigned long oapc_set_char_value(void *instanceData,unsigned long input,char
*value)

13

This function is called during operation when the OAPC_HAS_INPUTS capability and at least one
OAPC_CHAR_IOx input flag was set. It is called as soon as there is a data flow within the main application
that sets new characters for an input.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

input - the number of the input in range 0..7 where a new value has to be set

value – the new zero-terminated C character string that is set for that input

Return value: OAPC_OK if the new value could be set successfully or an error code according to the list below

Remarks: this function is called in execution mode only; when no such input type is provided by a plug-in this
function does not need to be implemented

unsigned long oapc_get_char_value(void *instanceData,unsigned long output,
unsigned long length,char *value)

This function is called during operation when the OAPC_HAS_OUTPUTS capability and at least one
OAPC_CHAR_IOx output flag was set. It is called from the main application to get new data that might be
available at this output.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

output - the number of the output in range 0..7 where a new value is fetched from by the main application

length – the size of the character array where value points to

value – pointer to a character array where the new value has to be stored into, the plug-in in no case is
allowed to copy more data to that location than the parameter length allows, that would lead to a crash of
the application

Return value: OAPC_OK if the new value could be retrieved successfully,
OAPC_ERROR_NO_DATA_AVAILABLE if no new data are available or an error code according to the list
below

Remarks: A value has to be returned to the main application only in case it has really changed or in case the
currently available value is really a new one. The plug-in has to avoid that the same value is given to the
main application twice without any reason.

This function is called in execution mode only. When no such output type is provided by a plug-in this
function does not need to be implemented.

unsigned long oapc_set_bin_value(void *instanceData,struct oapc_bin_head
input,char *value)

This function is called during operation when the OAPC_HAS_INPUTS capability and at least one
OAPC_BIN_IOx input flag was set. It is called as soon as there is a data flow within the main application that
sets a new binary data block for an input.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

input - the number of the input in range 0..7 where a new value has to be set

value – a structure that describes the binary data and is followed by the data immediately, please refer
below for a description of this structure.

Return value: OAPC_OK if the new value could be set successfully or an error code according to the list below

Remarks: this function is called in execution mode only; when no such input type is provided by a plug-in this
function does not need to be implemented.
The binary data are not allowed to be used directly. A plug-in can read them only until the function
oapc_set_bin_value() returns. When the data have to be used afterwards or when the data have to be
modified by the plug-in, they need to be copied before this function returns or before they are modified.

14

unsigned long oapc_get_bin_value(void *instanceData, unsigned long output,
struct **oapc_bin_head)

This function is called during operation when the OAPC_HAS_OUTPUTS capability and at least one
OAPC_BIN_IOx output flag was set. It is called from the main application to get new data that might be
available at this output.

Parameters: instanceData – pointer to the memory area that belongs to this instance of the plug-in

output - the number of the output in range 0..7 where a new value is fetched from by the main application

value – pointer where the pointer to the binary data have to be stored to

Return value: OAPC_OK if the new value could be retrieved successfully,
OAPC_ERROR_NO_DATA_AVAILABLE if no new data are available or an error code according to the list
below

Remarks: A value has to be returned to the main application only in case it has really changed or in case the
currently available value is really a new one. The plug-in has to avoid that the same value is given to the
main application twice without a good reason.

This function is called in execution mode only.
After this function returns the plug-in is no longer allowed to use the returned binary data, it doesn't is
allowed to modify them, it is not allowed to return them during an other function call and it is not allowed to
release the related memory areas. After returning from this function the main application can use this binary
data structure exclusively.

Directly after the call to this function the main application will call the function oapc_release_bin_data()
to give the plug-in the possibility to release all resources related to these binary data. This call happens
immediately, no other functions of the plug-in are executed in between.

When no binary data output type is provided by a plug-in this function does not need to be implemented.

void oapc_release_bin_data(void* instanceData,unsigned long output)

Memory areas that have been allocated by a plug-in have to be released by the same plug-in as
soon as they are no longer needed. Therefore the main application calls this function whenever a fetched
binary data structure is no longer needed. Here the order is as follows:

1. the main application calls oapc_get_bin_value() to get binary data created by a plug-in

2. now the main application is the exclusive owner of these data, the plug-in is no longer allowed to
access them in any way

3. directly after calling oapc_get_bin_value() the main application calls
oapc_release_bin_data() to hand over access privileges back to the plug-in, now it is able to
re-use the data or to release them, the main application will have copied them at this point (if
necessary) so that no collisions happen when the binary data are accessed

The parameters of this function specify which binary data can be released by the application, here the
instanceData of the related instance are handed over and the output number of the binary output where
the data have been fetched from.

void oapc_set_io_callback(void *instanceData,lib_oapc_io_callback
oapc_io_callback,unsigned long callbackID)

This function is called by the main application only when the capability flag
OAPC_ACCEPTS_IO_CALLBACK was set. It hands over a pointer to a callback function and a unique callback
identifier. Both values have to be stored. Whenever the internal state of the plug-in changes so that its output
states/values change, this callback function has to be called together with the ID.

Parameters: instanceData – pointer to the private memory area that belongs to this instance of the plug-in

oapc_io_callback – pointer to a function that has to be called whenever the output states change; it is

15

not necessary to store this pointer within the private instance data structure of this plug-in, this pointer is the
same for all plug-ins and for all instances of them

callbackID – a unique identifier for this specific instance of the plug-in that has to be sent back to the main
application when the callback function is called; different to the function pointer this value has to be stored
within the instance memory area

Return value: none

Remarks: The callback function itself is defined as
 oapc_io_callback(unsigned long outputs,unsigned long callbackID).
As parameters it expects the outputs, a list of OR-concatenated OAPC_xxx_IO flags that specify which
outputs have changed and therefore need to be accessed using the related oapc_get_xxx_value()
function call. The second parameter callbackID is the unique identifier that was announced by the main
application before. Here simply the value has to be sent back to the application that was given together with
the call of the function oapc_set_io_callback() before.

This function is called in execution mode only.

unsigned long oapc_get_error_message(void *instanceData, unsigned long length,
char *value)

This function is called immediately after an other function of the same plug-in returned an error code
OAPC_ERROR_CUSTOM to get the error text from the plug-in that has to be displayed as reaction to the
returned error. The new text must not exceed the given length and has to be copied into value. This
function itself can return any of the existing error codes but normally should give back OAPC_OK.
The error text should be given in English using plain, Latin-1 ASCII format. Translation to other languages is
done within the main application using the integrated translation mechanism as described below.

unsigned long oapc_read_pvalue(void* instanceData,double param,double *value)

There exist a special kind of XML definition that can be used to create a panel with freely definable
parameters and values. When this panel type <parampanel> is used there exists a possibility within the
settings dialogue of a plug-in to read data out of it. Since reading these values may be done by accessing
the hardware a plug-in accesses there is a special order of events when the related button is pressed within
the plug-ins configuration:

– a new instance is created using the flag OAPC_INSTANCE_MINIMUM_INIT to singalise the plug-in
not to overwrite values that could be read by the following operation

– the device is initialised by calling oapc_init()

– oapc_read_value() is called to read the parameter with number given in param; the value read
out of it has to be stored in pointer to value and OAPC_OK has to be returned in case of success,
otherwise an error code has to be returned

– the device is closed and the instance is destroyed

When the call to this function returns successfully the value given back by the double-pointer is shown within
the parameter panel.

2.1.5 BeamConstruct-specific Functions and Structures

BeamConstruct offers the possibility to access motion controllers directly out of the application via suitable
motion plug-ins. To find out which of the plug-ins are useable for such a BeamConstruct-internal operation
the application checks all available plug-ins and tries to request some specific data from them. As soon as
such data are found and in case they fit to BeamConstruct, the related plug-in can be used out of the
application.

Retrieval of these special information is done via a function oapc_get_config_info_data() that has to

16

be provided by such a motion plug-in and that returns detailed information about the motion controller. In
case BeamConstruct does not find such a function within a plug-in or in case the function is available but
returns invalid or unknown data, the related plug-in is rejected and not used for BeamConstruct internal
operations.

unsigned long oapc_get_config_info_data(void *instanceData,struct config_info
*fillStruct)

This function is called by BeamConstruct in order to get additional information about a plug-in, about
its capabilities and features. The function is called after creation of a new instance so that in parameter
instanceData valid instance-specific data are handed over to the plug-in. The second parameter
fillStruct is a pointer to a structure that is held by BeamConstruct and that has to be filled with valid data
as described below. In case that operation could be finished successfully the function has to return with
OAPC_OK or with an error code otherwise.

The structure of type struct config_info is defined in header file “oapc_libio.h” and consists of
following elements:

struct config_info
{
 unsigned short version,length;
 unsigned int configType;
 union
 {
 struct config_motion_controller motionController;
 struct config_image_capture imageCapture;
 struct config_zshifter zShifter;
 struct config_scanner_controller scannerController;
 struct config_laser_controller laserController;
 struct config_pcontrol pControl;
 }
};

version – specifies the version of the structure, this member in every case has to be set to
OAPC_CONFIG_INFO_VERSION which is always defined correctly according to the current version of the
structure and handled BeamConstruct-internally

length – the total length of the structure, to make it easy this member has to be set to sizeof(struct
config_info) always

configType – this value specifies the type of the plug-in and the type of the structure within the following
union that has to fit to this plug-in. Currently following types and corresponding structures are supported:

OAPC_CONFIG_TYPE_MOTIONCONTROLLER corresponds to struct config_motion_controller and
specifies motion-controller specific parameters:

struct config_motion_controller
{
 unsigned short version,length;
 unsigned char availableAxes;
 unsigned char useBinOutput;
 unsigned char rotationalAxes;
 unsigned char pad2;
 unsigned int pad4;
 int uMinPos[8],uMaxPos[8];
 int uMaxSpeed[8];
 unsigned int flags;

17

};

version – the version of the structure, this field has to be set to
OAPC_CONFIG_MOTION_CONTROLLER_VERSION so that it automatically fits to the current version of the
structure, different available versions and variants itself are handled BeamConstruct-internal

length – the total length of this structure, this member has to be set to sizeof(struct
config_motion_controller)

availableAxes – one motion plug-in can support up to eight separate axes internally. Via this member the
plug-in has to specify how much and which axes are available and configured properly so that they can be
used by BeamConstruct. This is done via the bits of this structure member, every bit that is set to 1
corresponds to an axis that can be used. Here bit 0 is equal to the first axis, al following bits correspond to
the following axes.

useBinOutput – this member has NOT to be filled by the plug-in, this is done by BeamConstruct. Here a
value 2 or 3 specifies if the motion plug-in will be assigned to OUT2 or OUT3 (according to the motion plug-
ins position within BeamConstruct and according to the assigned motion-output of the “BeamConstruct To
Control” plug-in within a ControlRoom environment). The plug-in in no case should touch this variable.

rotationalAxes – a motion plug-in can drive axes in planar or rotational mode. Via this member the plug-
in has to specify how much and which axes are configured for rotational mode. This is done via the bits of
this structure member, every bit that is set to 1 corresponds to an axis that is rotational, every bit set to 0 is
an axis that operates in planar/linear mode. Here bit number 0 is equal to the first axis, al following bits
correspond to the following axes.

uMinPos[8] – specifies the minimum position (in unit micrometers) for every available axis that can be
handled by the plug-in

uMaxPos[8] – specifies the maximum position (in unit micrometers) for every available axis that can be
handled by the plug-in

uMaxSpeed[8] - specifies the maximum allowed speed (in unit micrometers per second) for every available
axis that can be handled by the plug-in

flags – this member is currently unused, it is prepared for future use and has to be set to 0

OAPC_CONFIG_TYPE_IMAGECAPTURE corresponds to struct config_image_capture and specifies
parameters related to image-capturing plugins:

struct config_image_capture
{
 unsigned short version,length;
 unsigned short frameDelay; // delay in msec between two frames
};

version – the version of the structure, this field has to be set to
OAPC_CONFIG_IMAGE_CAPTURE_VERSION so that it automatically fits to the current version of the
structure, different available versions and variants itself are handled BeamConstruct-internal

length – the total length of this structure, this member has to be set to sizeof(struct
config_image_capture)

frameDelay – the delay that has to be issued after capturing one image (in unit milliseconds), this value
influences the frame rate

OAPC_CONFIG_TYPE_LASERCONTROLLER corresponds to struct config_laser_controller and
keeps data about separate plug-ins accessing a laser (e.g. via serial interface or Ethernet but not directly via
used scanner controller):

18

struct config_laser_controller
{
 unsigned short version,length;
 unsigned short reserved0,reserved1;
 unsigned int capabilities;
 unsigned int reserved2,reserved3,reserved4,reserved5;
};

version – the version of the structure, this field has to be set to
OAPC_CONFIG_LASER_CONTROLLER_VERSION so that it automatically fits to the current version of the
structure, different available versions and variants itself are handled BeamConstruct-internal

length – the total length of this structure, this member has to be set to sizeof(struct
config_laser_controller)

capabilities – this field contains a set of OR-concatenated flags which specify what parameters this
controller is able to manage. Depending on these flags the related fields are enabled in BeamConstruct's
pen settings dialogue. Here following flags are available:
- OAPC_LC_HAS_LASERON – the controller is able to turn the laser on
- OAPC_LC_HAS_LASEROFF – the controller is able to turn the laser on
- OAPC_LC_HAS_FREQ – the controller can set frequencies at the laser
- OAPC_LC_HAS_POWER – the controller can change the power for the laser

Beside of these values this structure currently does not hold any specific parameters. Listed structure
members are reserved for future use and have to be set to 0.

OAPC_CONFIG_TYPE_ZSHIFTER corresponds to struct config_zshifter and keeps data about
separate plug-ins accessing a third axis that is controlling the focus or Z-height. This configuration is
intended to be used for accessing a Z-axis that is NOT the one that can be handled by scanner controller:

struct config_zshifter
{
 unsigned short version,length;
 unsigned short reserved0,reserved1;
 unsigned int reserved2,reserved3,reserved4,reserved5;
};

version – the version of the structure, this field has to be set to OAPC_CONFIG_ZSHIFTER_VERSION so
that it automatically fits to the current version of the structure, different available versions and variants itself
are handled BeamConstruct-internal

length – the total length of this structure, this member has to be set to sizeof(struct
config_zshifter)

Beside of these values this structure currently does not hold any specific parameters. Listed structure
members are reserved for future use and have to be set to 0.

OAPC_CONFIG_TYPE_PCONTROL corresponds to struct config_pcontrol and keeps data about
separate plug-ins that are able to control additional process parameters in parallel to a marking process. This
includes definitions for additional pen parameters that can be given by a user in pen settings dialogue and
that are sent to the plug-in during a marking operation whenever the pen changes:

struct config_pcontrol
{
 unsigned short version,length;
 unsigned int flags;

19

 // *** parameters to be used within pen settings ********************
 char penPanelName[15];
 unsigned int paramFlag[OAPC_PCONTROL_MAX_CUST_PARAMS];
 int paramMin[OAPC_PCONTROL_MAX_CUST_PARAMS],
 paramMax[OAPC_PCONTROL_MAX_CUST_PARAMS],
 paramDef[OAPC_PCONTROL_MAX_CUST_PARAMS];
 unsigned int paramFloatFactor;
 char paramName[OAPC_PCONTROL_MAX_CUST_PARAMS][40];
 char paramUnit[OAPC_PCONTROL_MAX_CUST_PARAMS][20];
 unsigned int dispFlag[OAPC_PCONTROL_MAX_CUST_PARAMS];
 char dispName[OAPC_PCONTROL_MAX_CUST_PARAMS][40];
 int dispMin[OAPC_PCONTROL_MAX_CUST_PARAMS],
 dispMax[OAPC_PCONTROL_MAX_CUST_PARAMS];
 char dispUnit[OAPC_PCONTROL_MAX_CUST_PARAMS][20];
 unsigned short reserved0,reserved1;
 unsigned int reserved2,reserved3,reserved4,reserved5;
};

version – the version of the structure, this field has to be set to OAPC_CONFIG_PCONTROL_VERSION so
that it automatically fits to the current version of the structure, different available versions and variants itself
are handled BeamConstruct-internal

length – the total length of this structure, this member has to be set to sizeof(struct
config_pcontrol)

The following members of this structure are used to display additional parameters in BeamConstructs pen
settings:

penPanelName – when a process control plug-in is used within BeamConstruct, a new tab-pane is shown in
pen settings; here a ASCII-string can be given specifying a name for this panel

paramFlag – for each of the OAPC_PCONTROL_MAX_CUST_PARAMS custom pen parameters a flag can be
specified describing what kind of value is expected; when this is ste to 0, the related parameter value input
field is not shown. Here following values can be given:

• OAPC_CONFIG_PCONTROL_FLAG_INT_TYPE – the parameter is an integer value

• OAPC_CONFIG_PCONTROL_FLAG_FLOAT_TYPE – the parameter is a floating point value

paramMin – the minimum value the pen parameter is allowed to have; in case a floating point value is
shown in pen settings, paramFloatFactor is used to convert from integer to float

paramMax – the maximum value the pen parameter is allowed to have; in case a floating point value is
shown in pen settings, paramFloatFactor is used to convert from integer to float

paramDef – the default value the pen parameter is set to; in case a floating point value is shown in pen
settings, paramFloatFactor is used to convert from integer to float

paramName – an ASCII-string that is displayed as the name for the related parameter

paramUnit – an ASCII-string that is displayed as the unit for the related parameter

These members are values that are measured by the plug-in and that can be displayed in an own window
during marking process:

dispFlag – this flag specifies what kind of parameter has to be displayed, it is used to show a suitable
symbol; here following values are allowed:

• OAPC_CONFIG_PCONTROL_FLAG_TEMPERATURE_STYLE – the value to be displayed is a
temperature value, so a thermometer symbol is shown

• OAPC_CONFIG_PCONTROL_FLAG_PRESSURE_STYLE – the value to be displayed is a pressure
value

20

• OAPC_CONFIG_PCONTROL_FLAG_BRIGHTNESS_STYLE - the value to be displayed is a brightness
value

dispName – the name of the parameter to be shown in the values window

dispMin – minimum value to be shown, reserved for later usage, set it to the theoretical minimum that can
be shown here

dispMax – maximum value to be shown, reserved for later usage, set it to the theoretical maximum that can
be shown here

dispUnit – the unit of the parameter to be shown in the values window right beside the value

2.2 HMI plug-in Interface

The HMI plug-in programming interface can be used to create own shared libraries that act as separate user
interface element within the software. Such plug-ins can be added and edited within the HMI Editor and can
be combined with other elements within the Flow Editor. A HMI plug-in is able to

– visualise states and conditions

– accept direct user input

– implement logic flow functions

– retrieve data from different sources

– ...and other things more

The programming interface itself consists of a set of function calls that include all the functionalities
described in section 2.1 Flow plug-in Interface. That subset of functions implements the flow functionality part
of the plug-in. Beside of that an additional set of functions exists that have to be provided by the plug-in in
order to implement the visual / HMI part functionality of the plug-in.

2.2.1 General Usage

An HMI-plug-in shared library is used in two contexts: in configuration mode within the HMI Editor and the
Flow Editor and in execution mode within the player or debugger.

In configuration mode only some administrative tasks are done, here mainly the configuration description in
XML format is fetched from the library, the applications HMI Editor or Flow Editor converts it, displays a
comfortable configuration dialogue and sends the (modified) parameter values back to the library. Beside of
that a possibility is given where the software requests the configuration data from the library in order to store
them within a common project file. So the library itself does not to take care about any configuration files or
locations.

In execution mode the software asks the library to initialise at application start-up, sends data to it, fetches
new data from it and requests a de-initialisation at the end. Here when the main application sets a value to
the plug-in and afterwards fetches the returned value resulting from the preceding operation both calls to the
plug-in have to last less than 50 msec in order to guarantee a smooth flow of the total application. This fact
can be checked using the OpenDebugger, here an error message is printed whenever both calls together
need more than this time limit. It is important not to exceed that limit because within the OpenPlayer such
plug-ins will be rejected and no longer used once they take more time than allowed.

In both modes functions are used where the main software sends formerly saved configuration data to the
library so that it can work using these settings and where the main application sends graphical information to
the plug-in so that the user interface element can be drawn by the plug-in.

21

2.2.2 Plug-In Instances

Exactly as described for the Flow plug-in here the same concept of instances and private instance data is
used. That means also for a HMI plug-in the functions oapc_create_instance2() and
oapc_delete_instance() have to be provided by the plug-in as described above.

2.2.3 Loading and Saving Configurations

Similar to a Flow plug-in the HMI plug-in does not need to store configuration data for its own. That's also
done by the main software in the same way than described above.

Here one additional thing is important: There is no difference between HMI and flow configuration data, so
when an application has custom parameters for the HMI and the flow functionality of it, both datasets have to
be handled with the same calls of oapc_get_save_data() and oapc_set_load_data(), means the full
set of custom configuration data has to be managed with them.

2.2.4 Dependencies

Different to a Flow plug-in a shared library that implements a HMI plug-in depends on the free wxWidgets
tool kit That is the user interface tool kit the main application is developed with. Now when the HMI plug-in
wants to access the graphical user interface of the main application and needs to receive user interaction
events from the main software it has to use the same software framework, therefore it needs to compile with
the wxWidgets headers and use its functions. Linking has to be done against its shared Unicode, non-
universal libraries under Windows, for all other operating systems the configuration of the standard WX-
system packages has to be used.

For detailed information about the programming with the wxWidgets tool kit please refer to
http://www.wxwidgets.org , there different developer resources are available. You also will find help there
related to programming with wxWidgets.

Within the function specification below a short description is given whenever a wxWidgets functionality or
data type is used, for a more detailed description of them please refer to the official wxWidgets
documentation

To avoid that also a Flow plug-in – which does not need to use any wxWidgets data type or functionality –
also depends on this tool kit a switch OAPC_EXT_HMI_EXPORTS is used. When it is not defined, all HMI- and
wxWidgets-related definitions are disabled, when it is defined, they are enabled and the wxWidgets header
files have to exist. So you will be able to develop a HMI plug-in only when this definition is done within your
programming environment.

2.2.5 Function Description

Following the functions are described that have to be provided by a shared library in order to act as an HMI
plug-in correctly. Here only these functions are described that are used for the HMI plug-in exclusively or the
ones that have additional meanings and or additional parameters/flags for a HMI plug-in. So for a full
description of functions that have to be provided by a HMI shared library please first refer to 2.1.3 Function
Description.

For the exact data types and prototype definitions please use the related header file “oapc_libio.h” out of
the OpenAPC SDK. To enable the HMI definitions within that header file OAPC_EXT_HMI_EXPORTS needs to
be defined, it encapsulates all wxWidgets-related definitions so that a plain Flow plug-in does not need to
depend on them.

22

http://www.wxwidgets.org/

unsigned long oapc_get_capabilities()

This function is called by the main application. It returns information about the possibilities and
capabilities of the plug-in. Depending on what is sent back from this function the main application knows how
to handle this library and what it is useful for. The capabilities of the library are specified by a set of OR-
concatenated flags that have to be returned by this function call. Beside the capability-flags that are
described for flow plug-ins above, for a HMI plug-in following additional flags are valid:

– OAPC_HAS_STANDARD_FLOW_CONFIGURATION – when this flag is set, there is no XML
configuration requested for the flow configuration, instead of it a standard dialogue is used like it is
known e.g. from the Text Field control or the Horizontal/Vertical Gauge display. To use this plain
configuration the combination of inputs and outputs has to consist at least of a digital input and
output 0 and an optional, numerical or character input and output 7. Beside of that there – optionally
– can be a pair of numerical or character inputs and outputs 6 and an – also optional – digital input 1.
More inputs or outputs are not allowed when this simple configuration possibility is used. When it is
used, no flow image is required and the parameters that have been set by the user within this
standard configuration are stored by the main application automatically.
To check if a specific combination of inputs and outputs is valid to be used within the main
application, the following procedure is recommended:
1. define this capability flag
2. define your desired combination of input and output flags
3. do not provide a XML configuration (and resulting from that do not provide a flow image)
4. add the HMI element provided by this plug-in to the HMI Editor
5. put the HMI element that was added within the preceding step into the Flow Editor
If now a symbol with a “?” sign is displayed, the chosen combination of IO's can't be used together
with this capability, an own XML configuration structure has to be provided instead

– OAPC_ACCEPTS_MOUSECLICKS – the plug-in wants to receive mouse click events within the canvas
it is responsible for

– OAPC_ACCEPTS_MOUSEMOVES – when there is a mouse movement detected the plug-in needs to be
informed about that

– OAPC_ACCEPTS_MOUSEDRAGS – this parameter is a mixture out of the preceding two ones, it
enables the main application to send mouse event information to the plug-in whenever the mouse is
moved with the left mouse button held down within the plug-ins canvas

Beside of that there is an additional flag set that behaves slightly different. This flag set contains definitions to
which HMI category this plug-in belongs to and within which sub menu of the HMI Editor it is listed. These
flags have to be used exclusively and can't be combined with the OAPC_FLOWCAT_-flags that are reserved
for a Flow plug-in: after a HMI plug-in is added only within the HMI Editor and put to the Flow Editor
afterwards there can't be a definition for a Flow Editor category. So here exactly one of the following
category flags has to be OR-concatenated with the other capabilities:

– OAPC_HMICAT_CONTROL – the plug-in implements a HMI element that expects user interaction or
input

– OAPC_HMICAT_DISPLAY – the user interface element implemented by this plug-in displays some
information

– OAPC_HMICAT_STATIC – the visual representation implemented by this plug-in is a static one,
therefore its name will be listed within the section “Static” of the related menu within the HMI Editor

If no category flag is specified or in case an illegal/unknown flag is set the appropriate plug-in will be listed in
section “Miscellaneous”.

Parameters: none

Return value: the capability flags, please see above

Remarks: Independent from the capability flags specified here all functions described below have to be
provided by the shared library. The ones that are not used for a meaningful operation of the plug-in simply
have to return OAPC_ERROR_NOT_SUPPORTED instead of any operation.

This function is called in both, configuration and execution mode

23

unsigned long oapc_get_no_ui_flags()

Within the HMI Editor a configuration dialogue can be opened, that consists of a standardised base-
set of parameters that can be changed there. This dialogue can't be hidden and the parameters set there are
managed by the main application completely. After not all of the parameters that can be set there make
sense for a particular HMI element, some of them can be disabled so that the user no longer is able to enter
values for these unused or senseless parameters. Which of these parameters have to be disabled is
specified by this function. The main application calls it and expects a combination of OR-concatenated flags
that specify which parts of the HMI base parameters are not used. When this function returns 0, all
parameters are enabled, combinations of the following flags disable parts of it:

– OAPC_HMI_NO_UI_DISABLED – the state-checkbox “Disabled” is turned off when this flag is set

– OAPC_HMI_NO_UI_RO – this flag should be used when the user interface element does not support
a state “read only”, it disables the related option

– OAPC_HMI_NO_UI_MINMAX – when this flag is set, the input fields for minimum and maximum
values are disabled

– OAPC_HMI_NO_UI_TEXT – this flag disables the possibility to set texts for this user element

– OAPC_HMI_NO_UI_FG – no foreground colour can be chosen when this flag is set and returned by
this function

– OAPC_HMI_NO_UI_BG – no background colour can be chosen when this flag is set and returned by
this function

– OAPC_HMI_NO_UI_FONT – this option disables the possibility to choose a font for the HMI element

– OAPC_HMI_NO_SIZE – when this flag is set, the possibility to enter a size is turned of completely;
this flag can't be combined with the following one

– OAPC_HMI_SIZE_FIXED_ASPECT – in case resizing is allowed but the aspect ratio between width
and height has to be kept, this flags should be set; it disables the input field for the height and
updates it automatically whenever the width is changed (and vice versa)

– OAPC_HMI_NO_POS – when this flag is set there is no possibility to modify the position of the HMI
element out of the configuration dialogue

– OAPC_HMI_NO_UI_LAYOUT – the UI element can't be managed by the internal, automatic layout

Parameters: none

Remarks: The flags returned here influence the functionality of the elements main configuration panel within
the HMI Editor only. Beside of that it is still possible to implement additional, custom configuration
possibilities by providing additional panels for that dialogue via an XML structure. For more details please
refer to the description of oapc_get_hmi_config_data().

This function is called in configuration mode only.

void oapc_get_defsize(wxFloat32 *x,wxFloat32 *y)

This function returns the default size the HMI element is created with when it is added to the HMI
Editor for the first time.

Parameters: x – pointer to a variable to store the default width into

y – pointer to a variable to store the default height into

Remarks: This function is called in configuration mode only.

void oapc_get_minsize(void *instanceData,wxFloat32 *x,wxFloat32 *y)

This function returns the minimum size for an HMI element. When the user performs scaling
operations the main application will ensure that the size never will fall of the minimum size specified here.

24

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

x – pointer to a variable to store the minimum width into

y – pointer to a variable to store the minimum height into

Remarks: This function is called in configuration mode only.

void oapc_get_maxsize(void *instanceData,wxFloat32 *x,wxFloat32 *y)

This function returns the maximum size for an HMI element. When the user performs scaling
operations the main application will ensure that the size specified here never will be exceeded.

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

x – pointer to a variable to store the maximum width into

y – pointer to a variable to store the maximum height into

Remarks: This function is called in configuration mode only.

void oapc_get_numminmax(void *instanceData,wxFloat32 *minValue,wxFloat32
*maxValue)

Using this function the main application requests the current minimum and maximum values that are
used by this HMI plug-in. When a HMI element is added to the HMI editor for the first time this function
should return default minimum and maximum values. For all further calls these values should be returned
that are set by preceding calls of oapc_set_numminmax().

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

minValue – pointer to a variable to store the minimum value into

maxValue – pointer to a variable to store the maximum value into

Remarks: This functionality applies to HMI plug-ins only that handle numerical values. Independent from that
this function has to be provided by every kind of HMI plug-in. Where no numerical values are used it simply
should write 0 into both returning variables.

This function is called in configuration mode only.

void oapc_set_numminmax(void *instanceData,wxFloat32 minValue,wxFloat32
maxValue)

When this function is called by the main application the current numerical minimum and maximum
values are returned that are configured by the user within the HMI configuration dialogue. The values that
are handed over here are stored by the main application, so it is not necessary for the plug-in to put them
into the custom data that are used for loading and saving.

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

minValue – the new minimum value

maxValue – the new maximum value

Remarks: This functionality applies to HMI plug-ins only that handle numerical values. Independent from that
this function has to be provided by every kind of HMI plug-in. Where no numerical values are used it simply
should ignore the values given here.

This function is called in execution mode and in configuration mode.

void oapc_get_colours(wxUint32 *background,wxUint32 *foreground)

This function is executed by the main application exactly once: when the HMI element that is
implemented by this plug-in is added to the HMI editor for the very first time. Here the default values for
background and foreground colour are returned. After that, both colours are managed and stored by the

25

main application completely, there is no need to take care of them afterwards.

The colours have to be handed over in format 0xBBGGRR where RR stands for the red portion, GG for the
green portion and BB of the blue portion of the colour.

Parameters: background – pointer to a variable to store the background colour information into

foreground – pointer to a variable to store the foreground colour information into

Remarks: This function is called once in configuration mode.

char *oapc_get_hmi_config_data(void *instanceData)

When the configuration dialogue for a user interface element of the HMI editor is opened, it consists
of one standardised tabbed pane. This default tab pane can be used to configure and modify standard
parameters. In case it is necessary to offer extended configuration possibilities some more tab panes can be
added to this dialogue. These tab panes can be defined using an XML structure that is returned by this
function. For a description of the XML structure and which of its parameters can be used to create what kind
of tab pane and input element, please refer below.
Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

Remarks: Within the XML structure returned by this function no flow image has to be defined.

This function is called in configuration mode only.

void oapc_paint(void *instanceData,wxAutoBufferedPaintDC *dc,wxPanel *canvas)

This function is called by the main application whenever the HMI element has to be (re)painted. So
the plug-in has to redraw everything that is required to display the HMI element to the user.

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

dc – the buffered drawing context; this class provides several drawing functionalities in context of the
graphics element that is managed by this plug-in. Here the wxWidgets data type wxAutoBufferedPaintDC is
used for double-buffering to avoid flickering also when several redrawing operations are done.
wxAutoBufferedPaintDC inherits its methods and functionalities from wxDC, so for a detailed description
please refer to http://docs.wxwidgets.org/stable/wx_wxdc.html

canvas – the canvas the drawing context belongs to and that is assigned to this plug-in. For every HMI plug-
in the main application adds a wxPanel to the main window in order to encapsulate the access of the HMI
plug-in. That means, a user can draw freely within that canvas and does not take care about other elements.
This value can also be used to evaluate the current size that was specified for the user interface element by
the main application. Here the function wxPanel->GetClientSize() has to be called, there is no
additional interface function where the main application explicitly informs about resizing. The function
oapc_paint() is called by the main application whenever the size of the element has changed.
The wxPanel class is described at http://docs.wxwidgets.org/stable/wx_wxpanel.html

Remarks: This function is called in execution mode and in configuration mode.

void oapc_mouseevent(void *instanceData,wxMouseEvent* event)

When at least one of the OAPC_ACCEPTS_MOUSE... capability flags is set, this function is called by
the main application whenever a related mouse event occurs within the canvas this plug-in is responsible for.

Parameters: hmiInstance – pointer to the memory area that is assigned to this instance of the plug-in

event – the mouse event; using the methods of this object the exact type of the mouse event can be
evaluated, for a description please refer to http://docs.wxwidgets.org/stable/wx_wxmouseevent.html

This function is called in execution mode only.

26

http://docs.wxwidgets.org/stable/wx_wxmouseevent.html
http://docs.wxwidgets.org/stable/wx_wxwindow.html
http://docs.wxwidgets.org/stable/wx_wxdc.html

2.3 Error Codes

Following the error codes are defined that can be used by a plug-in to inform the main application about
illegal states and failed operations. According to the OSI layer model, a shared library from such a low level
(like the ControlRoom plug-ins work on) never should interact with the end user directly. Therefore several
common error codes are defined that result in meaningful message boxes on application level (when
necessary). So it is important to use an error code that really fits to the problem that occurred.

Following error codes can be used:

OAPC_OK

No error occurred, an operation could be completed successfully.

OAPC_ERROR_CONNECTION

A connection error happened, it was not possible to establish a (communication) connection that is
required for an operation. This error code can be returned e.g. during initialization or when handling with
input/output data.

OAPC_ERROR_DEVICE

A device error occurred, a required device is not available, could not be accessed, could not be
opened or similar things. This error code can be returned e.g. during initialization or when handling with
input/output data.

OAPC_ERROR_RESOURCE

A required resource could not be accessed or allocated. This error code can be returned e.g. during
initialization or when handling with input/output data.

OAPC_ERROR_NO_MEMORY

The plug-in was not able to allocate memory

OAPC_ERROR_AUTHENTICATION

An authentication error occurred because a user name, password, pin, code or anything similar did
not match. This error code can be returned e.g. during initialization.

OAPC_ERROR_NOT_SUPPORTED

According to the capabilities of a plug-in some of the functions that have to be provided by the
shared library can't be supported by the plug-in and never will be called by the application. After these
function calls have to be provided independent from the capabilities they simply have to return this “not
supported” error.

OAPC_ERROR_NO_DATA_AVAILABLE

This error code specifies that there are no new data are available at the requested output.

OAPC_ERROR_NO_SUCH_IO

The main application specifies input and output numbers according to the flags that have been set
by the plug-in. That means, normally no requests should take place for inputs the plug-in is unable to handle.
But to implement a correct range-checking and error handling this error code should be returned to the main

27

application for all these invalid input numbers. As an example: an plug-in specifies the digital inputs 2 and 3
are used. The related function that is called to set these data now will handle data for input 2 and 3 correctly
and return with OAKC_OK. For all other cases (input 0, 1, 4, 5, 6 and 7) the data have to be ignored and this
error code has to be returned.

OAPC_ERROR_CONVERSION_ERROR

There was an error during conversion of data types. This error code has to be returned in case a
given value had to be converted to a different format but did not fit to a format/structure that would be
necessary for a successful conversion.

OAPC_ERROR_STILL_IN_PROGRESS

This error can be returned by an input function in case the new data that are handed over by the
main application can't be handled at the moment. It tells the application that the new request comes to fast or
too early to be processed because the plug-in still tries to manage the data given in a preceding call.

OAPC_ERROR_RECV_DATA

This error has to be returned when the reception of data from an external source has failed.

OAPC_ERROR_SEND_DATA

When the transmission of data to an external target was not possible this error code has to be
returned to the main application.

OAPC_ERROR_PROTOCOL

an error with/in a communication protocol of the plug-in occurred, this may happen because of
different reasons, e.g. a wrong sequence of commands to the plug-in, an incompatible version or others

OAPC_ERROR_INVALID_INPUT

the input data are invalid, they are either out of the allowed range or – for binary data – the data type
is wrong/unknown or in wrong/unknown compression state

OAPC_ERROR_CREATE_FILE_FAILED

the creation of a new file or opening a file for appending data failed; this error code has to be used
whenever opening a file for writing failed

OAPC_ERROR_OPEN_FILE_FAILED

opening of an existing file failed, this error code has to be used whenever opening of a file for
reading data out of it failed

OAPC_ERROR_WRITE_FILE_FAILED

writing of data into a file failed, this error code has to be used when opening of a file was successful
but writing data into it is not possible

OAPC_ERROR_READ_FILE_FAILED

reading data from a file failed, this error code has to be used when opening of a file was successful
but reading the (expected) data is not possible

28

OAPC_ERROR_CUSTOM

an error occurred where the plug-in itself has some additional error information. Directly after this
error code was returned, the main application calls function oapc_get_error_message() of the plug-in to
retrieve an error text which has to be displayed. In such a case the plug-in has to store the error information
internally to send back the correct error text when this function is called

OAPC_ERROR_LICENSE

This error is returned when a function is called that can't be executed due to a missing or wrong
license.

OAPC_ERROR_LIBRARY_MISSING

Some plug-in require a 3rd party shared library that is not delivered with OpenAPC package. Such a
shared library normally should be installed in /usr/lib, /usr/lib64, WINDOWS\SYSTEM32,
WINDOWS\SYSWOW64 or similar folders. When such a library could not be found/opened by a plug-in, this
error code has to be returned in order to show a informative error message to the user that informs about the
missing library and the location it should be copied into.

OAPC_ERROR_STOPPED

An operation was interrupted by an (external) stop-event and therefore could not be completed
successfully.

OAPC_ERROR_OUT_OF_RANGE

A (measured) value is out of its allowed range

OAPC_ERROR

A general, not exactly specifiable error occurred. This error code normally should never be used.
There is only one conditions where it would be allowed to return this value: when an error is a follow-up of a
preceding error that was specified by an other error code more in detail.

2.4 Binary Data Handling and Structures

2.4.1 Using of Binary Data Blocks

Binary data have to be used in a different way than the other data types. Because these data can have a big
size every data block exists only once. During the flow of data only references to the same data block are
forwarded between the elements of a project.

Resulting from that following rules are important for a plug-in

– it is allowed to access data only during the main application calls the plug-in; in case they have to be
used later a copy of the data (including head and appended data block) has to be made

– handed over data are not allowed to be modified by a plug-in; in case that is necessary a copy has to
be made before modification

– after a plug-in has returned a binary data block the main application can use this data block
exclusively, the plug-in no longer is allowed to access this data block in any way. In case these data
are still needed a copy has to be made before the data are sent to the main application. This is very
important in case a plug-in uses an own thread that may access such a data block asynchronously.
In such cases additional locking mechanisms may be necessary to avoid concurrent accesses to this

29

data block.

2.4.2 Binary Data related Structures and Definitions

A binary data block consists of a head of type struct oapc_bin_head that contains all necessary
information about the data and the binary data itself. That payload is appended to the head directly.

The binary data head contains the following members:

struct oapc_bin_head
{
 int version;
 int sizeHead; // deprecated, do not use any more!
 unsigned char type,subType;
 unsigned char compression;
 unsigned char unit;
 short unitExponent;
 short int1;
 int param1,param2,param3;
 int sizeData;
 char data;
};

version – a version number that describes the version of this structure, it has to be set to
OAPC_BIN_HEAD_CURR_VERSION when a new data structure is created

sizeHead – this element is deprecated, instead of the value given here use sizeof(struct
oapc_bin_head)

type – this element specifies the type of the data, here one of the OAPC_BIN_TYPE_ttt constants has to
be set. When a new data type has to be introduced because the current ones do not apply, please use the
placeholder OAPC_BIN_TYPE_CUSTOM during development and contact us to get a unique ID for your
application.

subType – this element specifies the subtype of the data that belongs to a data type and specifies it more
exactly. Here one of the OAPC_BIN_SUBTYPE_ttt_sss constants has to be set. When a new data subtype
has to be introduced because the current ones do not apply, please use the placeholder
OAPC_BIN_TYPE_ttt_CUSTOM during development and contact us to get a unique ID for your application.
For a list of existing data type constants and their meaning please refer to header file oapc_libio.h.

compression – a data block may be compressed, here the compression type is an additional property of
the data and encapsulates the real data type described by the type and subType members. The used
compression is specified by the OAPC_COMPRESS_ccc constants. In case the data are not compressed this
value is set to OAPC_COMPRESS_NONE. For a list of existing data subtype constants and their meaning
please refer to header file oapc_libio.h.

unit – this field is valid only for some special data types and specifies the related measurement unit using
one of the constants OAPC_BIN_UNIT_ttt_uuu.

unitExponent – in case a unit is used for the data type this one specifies an exponent. Positive exponent
values are used for exponents greater than 0 (e.g. 3 for “kilo”, 6 for “mega”, 9 for “giga” and so on) negative
values define values smaller than 0 (e.g. -1 for “milli”, -6 for “micro”, -9 for “nano”).

int1 – this value is used application-internal and does not have to be changed; in case a structure is
created newly it has to be set to 0

param1, param2, param3 – user-defined, data-dependent values; these values can be used to specify
parameters that belong to the data. For a description how these parameters are used for which data types
and subtypes please refer below. In case you want to use these parameters for data types/subtypes where

30

no usage is defined, please contact us so that we can specify this usage and to avoid incompatibilities

sizeData – the total size of the data block

data – this member is the position of the first byte of the payload. That means the payload and the data
head overlap here for one byte

To create a binary data block including a valid binary data head it is recommended to use function
oapc_util_alloc_bin_data() out of liboapc. Releasing of such a block afterwards can be done by
calling oapc_util_alloc_bin_data().

2.4.2.1 Data-Type Dependent Parameter Usage

Following some data types, subtypes, their meaning and the usage of their parameter-members are
described. The usage scenario of the types and parameters listed here is mandatory, do not use them in a
different way to avoid incompatibilities. When you need additional/missing parameter definitions and/or need
to introduce new parameters, please contact us so that we can specify them for you.

Data Type Data Subtype Description param1 param2 param3

OAPC_BIN_TYPE_
IMAGE

OAPC_BIN_SUBT
YPE_IMAGE_RGB
24

uncompressed
raw image data

image width in
pixels

image height
in pixels

unused, image
depth is 24 bit

OAPC_BIN_TYPE_
IMAGE

OAPC_BIN_SUBT
YPE_IMAGE_GRE
Y8

uncompressed
raw grey-scale
image data

image width in
pixels

image height
in pixels

unused, image
depth is 8 bit

OAPC_BIN_TYPE_
IMAGE

OAPC_BIN_SUBT
YPE_IMAGE_BW1

uncompressed
raw black/white
image data or
mask bitmap

image width in
pixels

image height
in pixels

unused, image
depth is 1 bit

OAPC_BIN_TYPE_
TEXT

OAPC_BIN_SUBT
YPE_TEXT_PLAI
N

Contains plain, 7
bit ASCII text
data in payload

number of
characters in
text, for ASCII
7 bit this
always should
be equal to the
data size

unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_CT
RL

coordinate
motion control
structure
including tool
information

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_CT
RLEND

marker for end
of coordinate
motion control
data

Unique
identifier to
specify a point
in data stream,
0 means no
synchronisatio
n information
is available;
please also

unused unused

31

refer to
OAPC_BIN_SU
BTYPE_STRUC
T_SYNC below

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_MO
TIONCTRL

motion control
structure

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_WA
ITTRIG

marker for stop
processing until
an external
trigger was
detected or until
distance has
passed by

when not
equal 0:
distance in unit
micrometers
after what a
trigger has to
be released
automatically

unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_DE
LAY

stop current
process for
given time

Delay in unit
nanoseconds

unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_LA
SERCTRL

Contains special
laser control
parameters

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_OU
TPUTCTRL

output analogue
and/or digital
data via device

if value greater
0: switch back
the outputs to
previous
values after
the given time
(in unit
nanoseconds)
has elapsed; if
value smaller
than 0: the last
delay value
has to be
increased by
this value for
the number of
times specified
with param3

If value greater
0: wait for the
given time (in
unit
nanoseconds)
until
processing
next binary
command; if
value smaller
than 0: the last
delay value
has to be
increased by
this value for
the number of
times specified
with param3

loop counter; if
value is 0..1
the pulse
specified by
param1 and
param2 has to
be issued
once, if it is
greater 1 these
pulses have to
be issued for
this number of
times

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_OU
TPUTRESP

Response to a
OAPC_BIN_SUB
TYPE_STRUCT_
OUTPUTCTRL
structure after it
was handled

loop counter
result; this
value informs
the calling
application
how much of
the loops that
have been
requested
could be
issued really

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_INPUT
CTRL

fetch analogue
and/or digital
input signals

unused unused unused

32

from a device

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_BITMA
P

additional
bitmap
parameters that
are required in
case a bitmap
has to be output
via a special
device

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_MARKR
EADY

Signalises a
plug-in to make
ready for
marking – this is
issued typically
when the mark
dialogue is
opened

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_ENDMA
RKREADY

Signalises a
plug-in to no
longer be ready
for marking –
this is issued
typically when
the mark
dialogue is
closed

unused unused unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_JOBST
ART

Signalises a
plug-in a
marking job is
started now –
this is issued
typically
immediately
when marking
process is
started

unused unused Unused

OAPC_BIN_TYPE_
STRUCT

OAPC_BIN_TYPE
_STRUCT_JOBEN
D

Signalises a
plug-in a
marking job is
finished now –
this is issued
typically
immediately
after all marking
data have been
processed

unused unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_SC
ANHEADNFO

Contains
information
about the
connected
scanhead and
its current state

unused unused unused

OAPC_BIN_SUBTY OAPC_BIN_SUBT Stop output of unused unused unused

33

PE_STRUCT YPE_STRUCT_ST
OPOUTPUT

data as fast as
possible

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_ST
ARTOUTPUT

Start output of
data; this
structure can be
send from a
plug-in to main
application

unused unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_BR
AKEOUTPUT

Stop output of
data regularly,
comparing to
OAPC_BIN_SUB
TYPE_STRUCT_
STOPOUTPUT
this command
does not expect
immediate stop,
here data
already queued
for optput still
can be sent

unused unused Unused

OAPC_BIN_SUBT
YPE_STRUCT_AX
ISSTATE

Returns current
position and
speed of an
axis; this
structure can be
used in cases
where more
axes are
controlled than
can be signalled
by available
outputs

0-based
number of the
axis the
following
values are
valid for

Current axis
position in unit
mm

Current axis
speed in unit
mm/sec

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_DY
NGEOMSTART

Specifies the
beginning of a
stream of
dynamic data
starting with a
struct
oapc_bin_str
uct_dyn_data
and followed by
additional data
until end is
signalised

unused unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_DY
NGEOMEND

Signalises the
end of dynamic
data

unused unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_RE
SETTIMER

An plug-in can
send this to the
main application
to reset the
process timer;
this is useful

unused unused Unused

34

when an
operation does
not start
immediately
after data have
been sent but
some
unpredictable
time later

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_SL
ICESTART

Signals the
beginning of a
(new) slice

Thickness of
current slice in
unit
micrometers

unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_SL
ICEEND

Signals the end
of current slice

Thickness of
current slice in
unit
micrometers

unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_FA
STOUTPUTCTRL

output analogue
and/or digital
data via device;
comparing to
OAPC_BIN_SUB
TYPE_STRUCT_
FASTOUTPUTCT
RL a plug-in has
to output these
data
immediately and
as fast as
possible –
independent
from the state of
all previously
send commands

if value greater
0: switch back
the outputs to
previous
values after
the given time
(in unit
nanoseconds)
has elapsed; if
value smaller
than 0: the last
delay value
has to be
increased by
this value for
the number of
times specified
with param3

unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_ST
OPAXIS

Signals a plug-in
to stop motion of
an axis

number of the
axis to be
stopped in
range 0..7

unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_HA
LT

With this binary
structure the
main application
signals a plug-in
to halt or to
continue a
running
operation

1 – halt the
current
operation

2- contiune a
previously
halted
operation

unused unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_PO
WERDOWN

Turn off the
power at a
connected
device

unused unused Unused

OAPC_BIN_SUBTY
PE_STRUCT

OAPC_BIN_SUBT
YPE_STRUCT_SY

Signal a specific
synchronsation

Unique
identifier to

unused unused

35

NC point within a
data stream via
a unique
identifier

specify a point
in data stream,
0 means no
synchronisatio
n information
is available;
please also
refer to
OAPC_BIN_SU
BTYPE_STRUC
T_CTRLEND
above

2.4.2.2 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRL

The binary data defined by type OAPC_BIN_TYPE_STRUCT and subtype
OAPC_BIN_SUBTYPE_STRUCT_CTRL are a formatted structure that contains information about motion and
tool data that can be used for material processing:

struct oapc_bin_struct_ctrl
{
 unsigned int validityFlags;
 unsigned char on;
 unsigned char reserved1;
 unsigned short numCoords;
 int power,frequency;
 unsigned int offSpeed,onSpeed;
 int offDelay,onDelay;
 int toolParam[6];
 struct oapc_bin_struct_vec3d coord[1];
};

validityFlags – some of the fields within this structure are optional, they may not contain valid data in
some cases; using the bits validity-flags-fields the valid ones are specified. Following constants are used
here:

– TOOLPARAM_VALIDFLAG_Z – this is the only parameter that may not change between different data
packets of the same stream, it signalises if the control data are for 3D operations or if they are flat
and the Z coordinate is unused. In case this flag is set/not set for one stream it has to be set/unset
for all other data packets of the same stream because plug-ins and devices that accept such data
don't have to manage data that toggle between 2D and 3D.

– TOOLPARAM_VALIDFLAG_ON – when this flag is set the value in field on (as described below) is
valid and has to be used

– TOOLPARAM_VALIDFLAG_POWER – when this flag is set the field power contains a (new) value

– TOOLPARAM_VALIDFLAG_FREQ – this flags points to a valid field frequency

– TOOLPARAM_VALIDFLAG_OFFSPEED – this flag signals a possibly changed value in field offSpeed

– TOOLPARAM_VALIDFLAG_ONSPEED – when this flag is set the value in field onSpeed may have
changed

– TOOLPARAM_VALIDFLAG_OFFDELAY – when this flag is set the field offDelay is valid and may
contain a changed value

36

– TOOLPARAM_VALIDFLAG_ONDELAY – this flag belongs to field onDelay, the related value may
have changed when it is set

– TOOLPARAM_VALIDFLAG_PARAM1 – this flags belongs to the optional parameter that is stored in
toolParam[0]

– TOOLPARAM_VALIDFLAG_PARAM2 – this flags belongs to the optional parameter that is stored in
toolParam[1]

– TOOLPARAM_VALIDFLAG_PARAM3 – this flags belongs to the optional parameter that is stored in
toolParam[2]

– TOOLPARAM_VALIDFLAG_VARIABLE_PARAM3 – this flags belongs to the optional parameter that is
stored in toolParam[2], different to TOOLPARAM_VALIDFLAG_PARAM3 when this flag is used, the
value stored there is variable and depends on some external parameters, both
TOOLPARAM_VALIDFLAG_PARAM3 and TOOLPARAM_VALIDFLAG_VARIABLE_PARAM3 can't be
used together, they exclude each other

– TOOLPARAM_VALIDFLAG_PARAM4 – this flags belongs to the optional parameter that is stored in
toolParam[3]

– TOOLPARAM_VALIDFLAG_PARAM5 – this flags belongs to the optional parameter that is stored in
toolParam[4]

– TOOLPARAM_VALIDFLAG_PARAM6 – this flags belongs to the optional parameter that is stored in
toolParam[5]

– TOOLPARAM_DESCFLAG_IS_SLICE – this flag does not belong to a parameter of this structure, it is
an additional description for the vector data marking them as part of a slice generated out of a 3D
mesh

on – this value can have the states 0 or 1 and signals if a tool is on or not

numCoords – this value corresponds to the field coord, it specifies how much coordinate values do really
exist in this structure, means the size of numCoords is equal to the real size of the array coord

power – a power value in unit % and with a valid range from 0 to 100

frequency – a frequency in unit Hz

offSpeed – motion speed (in unit micrometers per second) that has to be used when the tool is turned off

onSpeed – motion speed (in unit micrometers per second) that has to be used when the tool is turned on

offDelay – delay (in unit microseconds) when the tool is switched off

onDelay – delay (in unit microseconds) when the tool is switched on

toolParam – up to six additional, optional tool parameters that can be used freely

coord – an array of motion/position coordinates with the length specified by field numCoords, this structure
contains separate fields for x, y and the optional z value (in unit micrometers) and is defined as follows:

struct oapc_bin_struct_vec3d
{
 int x,y,z;
};

2.4.2.3 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRLEND

The binary data defined by type OAPC_BIN_TYPE_STRUCT and subtype
OAPC_BIN_SUBTYPE_STRUCT_CTRLEND does not contain any additional data and belongs to the binary
data type OAPC_BIN_SUBTYPE_STRUCT_CTRL. It identifies the end of a binary control data stream and
therefore can be used to start processes that require the full set of available control data.

37

2.4.2.4 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_MOTIONCTRL

The binary data defined by type OAPC_BIN_TYPE_STRUCT and subtype
OAPC_BIN_SUBTYPE_STRUCT_MOTIONCTRL are a formatted structure that contains plain information about
motion for several axes but no synchronous tool data.

struct oapc_bin_struct_motionctrl
{
 unsigned char enableAxes;
 unsigned char relativeMovement;
 unsigned char stopAxes;
 unsigned char moveAxesToHome;
 unsigned int position[8];
 unsigned int speed[8];
};

Using one structure up to eight axes can be supported, currently there are three axes in use at maximum
from within BeamConstruct or CNConstruct. The members of this structure define which axis has to be
moved in which speed by which distance:

enableAxes – this is a bit-pattern that defines which of the axes have to be moved, here every bit that is set
corresponds to an axis where movement data are available

relativeMovement – this bit-pattern specifies if a movement information for an axis specifies a relative
movement or not, when a bit for an axis is set to 0 it means the position-parameter specifies an absolute
movement, in case it is set to 1 a relative movement is specified

stopAxes – this is a bit-pattern that overrides all other parameters except than enableAxes and specifies
which of the enabled axes has to be stopped immediately

moveAxesToHome – this is a bit-pattern that overrides all other parameters except than enableAxes and
specifies which of the enabled axes have to be moved to its home or reference position; this movement is
done using the for homing/referencing that is predefined for the related motion controller

position – the position an axis has to be moved to (in case of absolute movements) or the value the
position has to be changed by (in case of relative movements), the value is specified in unit micrometers and
is valid only for these indices of the array where the bit number of enableAxis is set to 1

speed – the elements of this array define the motion speed for the axes to be moved in unit micrometers per
second, the values given here are valid only for these indices where the corresponding bit number of the
structure member enableAxis is set to 1

2.4.2.5 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_LASERCTRL

The binary data defined by type OAPC_BIN_TYPE_STRUCT and subtype
OAPC_BIN_SUBTYPE_STRUCT_LASERCTRL are used to transmit a structure that contains several laser
parameters. These parameters are stored within a structure oapc_bin_struct_laserctrl and should be
checked logically: only these values have to be set that really fit for the currently used laser type. Some of
them are no clear laser parameters but are used as a combination of laser and scanner parameters. They
reside within this structure because they belong to “laser marking” and therefore to the used lasers in
general:

struct oapc_bin_struct_laserctrl

38

{
 unsigned short version,res;
 unsigned int uPolyDelayBreakAngle;
 unsigned int nPulseLength;
 unsigned int uWobbleAmp,mWobbleFreq;
 unsigned int uPulseLength;
 unsigned int nFirstPulse;
 unsigned int res;
 unsigned int nStandByPulseWidth;
 unsigned int standByFreq;
 unsigned int waveformNum;
 unsigned int edgeLevel;
 unsigned int skyTimeLag,skyOnShift,skyPrev,skyPost;
 unsigned int rampMode;
 unsigned int uRampStartLen,uRampEndLen;
 unsigned int mRampStartVal,mTampEndVal;
};

version – used for upwards compatibility, the current structure uses version number 1 which is increased
every time a new member is added or something else is changed

uPolyDelayBreakAngle – specifies an angle in unit micro-degrees that is used as threshold to apply a
polygon delay

nPulseLength – laser pulse length in unit nanoseconds

uWobbleAmp and mWobbleFreq – specify amplitude (in unit micrometers) and frequency (in Hz/1000) for
wobble-modulation during a marking operation, if at least one of both values is set to 0 wobble is disabled

uPulseLength – this value is deprecated and will be removed, please use nPulseLength instead!

nFirstPulse – first pulse time in unit nanoseconds

nStandByPulseWidth – stand by pulse length in unit nanoseconds

standByFreq – stand by frequency in unit Hz

waveformNum – laser waveform number to be used for output

edgeLevel – level of an edge as threshold for applying a polygon delay to it

skyTimeLag, skyOnShift, skyPrev, skyPost – these are parameters for sky writing mode to get clear
and sharp edges and corners in marked geometries

rampMode – ramping mode flags, they specify the ramping mode (speed or power) and position (beginning
or end of a marking operation) to be used together with the following parameters

uRampStartLen, uRampEndLen, mRampStartVal, mTampEndVal – ramping parameters to perform
speed and/or power ramping using specific start and end values over a given time

2.4.2.6 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_BITMAP

This structure type flag makes use of a structure oapc_bin_struct_bitmap which contains some
additional bitmap information. These information can be sent before a image of one of the main types
OAPC_BIN_TYPE_IMAGE is transmitted to a device:

struct oapc_bin_struct_bitmap
{
 int uPosOffsetX,uPosOffsetY,uPosOffsetZ;
 int udPixelSizeX,udPixelSizeY,udPixelSizeZ;
 int flags;

39

};

uPosOffsetX, uPosOffsetY, uPosOffsetZ – offset coordinate information that specify where to position
the bitmap at the output device, these fields give the offset in unit micrometers

udPixelSizeX, udPixelSizeY – the size of every pixel in x and y direction, these values have to be used
to scale the image to a size according to the devices output capabilities (unit is micrometers)

udPixelSizeZ – reserved for future use (since current bitmaps do not have a thickness it is currently
unused)

flags – this member contains a set of OR-concatenated flags that describe how the output of the bitmap
should be done and give some hints about its structure, here following values are possible:

– BITMAP_FLAG_MARK_BIDIRECTIONAL – output of the bitmap should be done bidirectional, means
as soon as the end of the first line was reached the second line should be started at the end and
processed to its beginning, then the third line should be started from the beginning to the end again
and so on

– BITMAP_FLAG_MARK_FROM_LAST_LINE – output of the bitmap should be done from top to bottom,
means starting from last line and moving up to first line

– BITMAP_FLAG_MARK_WO_LINE_INCR - only an output of lines should be done, the vertical
dimension (its height) should be ignored and all lines should be output at the same position

2.4.2.7 Binary Data Structures OAPC_BIN_SUBTYPE_STRUCT_OUTPUTCTRL,
OAPC_BIN_SUBTYPE_STRUCT_WAITINPUTCTRL and OAPC_BIN_SUBTYPE_STRUCT_INPUTCTRL

Followed by these structure sub-types there is always a structure oapc_bin_struct_ioctrl attached.
This structure contains information about output ports that have to be set, input states a device has to wait
for until operation is continued or input ports values that have been read.

struct oapc_bin_struct_ioctrl
{
 unsigned int enableFlags;
 unsigned char laserport8[2];
 unsigned char digital8[2];
 unsigned char digital8mask[2];
 unsigned short digital16[2];
 unsigned short digital16mask[2];
 unsigned char analogue8[2];
 unsigned short analogue16_0;
 unsigned short analogue10[6];
 unsigned short analogue12[4];
 unsigned short analogue16_1,analogue16_2;
 unsigned long digital32;
 unsigned long digital32mask;
 char serialData[IOCTRL_SERIAL_DATA_LENGTH+1]
 unsigned char laserport8mask[2];
};

enableFlags – these flags specify which of the following members contain valid data and therefore can be
used for setting an output port or for reading the state of an input port from. This member can contain
following OR-concatenated flags:

– IOCTRL_LASERPORT_8_1 - the first laserport member of this structure is used for setting full
numeric values, this flag can't be combined with IOCTRL_LASERPORT_8_1_BITS

40

– IOCTRL_LASERPORT_8_2 - the second laserport member of this structure is used for setting full
numeric values, this flag can't be combined with IOCTRL_LASERPORT_8_1_BITS

– IOCTRL_ANALOGUE_8_1 - the first 8 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_1 - the first 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_2 - the second 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_3 - the third 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_4 - the fourth 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_5 - the fifth 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_10_6 - the sixth 10 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_12_1 - the first 12 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_12_2 - the second 12 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_12_3 - the third 12 bit analogue port member of this structure is used

– IOCTRL_ANALOGUE_12_4 - the fourth 12 bit analogue port member of this structure is used

– IOCTRL_DIGITAL_8_1 - the first 8 bit digital port member of this structure is used

– IOCTRL_DIGITAL_8_2 - the second 8 bit digital port member of this structure is used

– IOCTRL_DIGITAL_16_1 - the first 16 bit digital port member of this structure is used

– IOCTRL_DIGITAL_16_2 - the second 16 bit digital port member of this structure is used

– IOCTRL_DIGITAL_32 – a (first) 32 bit digital port member of this structure is used

– IOCTRL_ANALOGUE_16_0 (outdated, previous constant name: IOCTRL_ANALOGUE_16) – the 16 bit
analogue port member analogue16_0 (outdated, previous variable name: analogue16) within this
structure is used and contains valid data

– IOCTRL_ANALOGUE_16_1 – the 16 bit analogue port member analogue16_1 within this structure
is used and contains valid data

– IOCTRL_ANALOGUE_16_2 – the 16 bit analogue port member analogue16_2 within this structure
is used and contains valid data

– IOCTRL_SERIAL_DATA – the serialData member contains data with a maximum length of
IOCTRL_SERIAL_DATA_LENGTH to be transmitted via serial port

– IOCTRL_LASERPORT_8_1_BITS - the first laserport member of this structure is used together with
the first laserport8mask member for setting and clearing single bits, this flag can't be combined with
IOCTRL_LASERPORT_8_1

– IOCTRL_LASERPORT_8_2_BITS - the second laserport member of this structure is used together
with the second laserport8mask member for setting and clearing single bits, this flag can't be
combined with IOCTRL_LASERPORT_8_1

All other members of this structure can hold the data according to the flags specified here. The valid range of
these member depends on the given number of bits. As an example: the analogue 10 bit ports make use of
the members analogue10 which may have a value in range 0..1023.

2.4.2.8 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_SCANHEADINFO

The structure oapc_bin_struct_scanheadinfo contains information about a connected scanhead, its
axes, galvos and general state:

41

struct oapc_bin_struct_scanheadinfo
{
 unsigned char ndHead;
 char res1,res2,res3;
 unsigned int errorFlags;
 unsigned short galvoTemp[3];
 unsigned short boardTemp[3];
 unsigned int serialNumber[3],articleNumber[3];
 unsigned int firmwareVersion[3];
 unsigned int uAperture;
 unsigned int pWavelength;
 unsigned int operatingTime[3];
 char cardType[128],headType[128];
};

ndHead – specifies the head number, this has nothing to do with multihead mode but with a possibly existing
secondary head option (a mode where both heads mark the same data in parallel)

errorFlags – this member specify possible error states via following, or-concatenated flags:
SCANHEAD_ERRORFLAG_VOLTAGE_X – voltage error on X-axis
SCANHEAD_ERRORFLAG_VOLTAGE_Y – voltage error on Y-axis
SCANHEAD_ERRORFLAG_VOLTAGE_Z – voltage error on Z-axis
SCANHEAD_ERRORFLAG_GALVOTEMP_X – X galvo temperature error
SCANHEAD_ERRORFLAG_GALVOTEMP_Y – Y galvo temperature error
SCANHEAD_ERRORFLAG_GALVOTEMP_Z – Z galvo temperature error
SCANHEAD_ERRORFLAG_POSITION_X – X positioning error
SCANHEAD_ERRORFLAG_POSITION_Y – Y positioning error
SCANHEAD_ERRORFLAG_POSITION_Z – Z positioning error

galvoTemp[3] – temperature of each possible galvo in unit 1/10 degrees (0=X, 1=y, 2=Z), when there is no
temperature information available for one galvo this value has to be set to 0

boardTemp[3] – board temperature of each possible galvo in unit 1/10 degrees (0=X, 1=y, 2=Z), when
there is no board temperature information available for a galvo this value has to be set to 0

serialNumber[3] – serial numbers each possible galvo (0=X, 1=y, 2=Z), when there is no serial number
information available for a galvo this value has to be set to 0

articleNumber[3] – article numbers each possible galvo (0=X, 1=y, 2=Z), when there is no article
number information available for a galvo this value has to be set to 0

firmwareVersion[3] – board firmware version number for each possible galvo (0=X, 1=y, 2=Z), when
there is no firmware version number available for a galvo this value has to be set to 0

uAperture – aperture size in unit micrometers

pWavelength – wavelength in unit picometers

operatingTime[3] – total operation time each possible galvo (0=X, 1=y, 2=Z), when there is no operating
time information available for a galvo this value has to be set to 0

cardType - the textual name of a card, set to 0 if no name is available

headType - the textual type name of a head, set to 0 if no name is available

2.4.2.9 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_POS_CORR

The structure oapc_bin_struct_pos_corr contains correction information for translation in X, Y and Z
direction as well as rotation information for rotations around X, Y and Z axis. This structure can be used to
correct and modify existing coordinate systems and vector data:

42

struct oapc_bin_struct_pos_corr
{

 int uPosX,uPosY,uPosZ; // position offset / linear translation in X, Y
 // and Z direction in unit micrometers
 int mXAngle,mYAngle,mZAngle; // rotational correction around X, Y and Z axis
 // in milli-degrees
};

2.4.2.10 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_DYNGEOMSTART

The structure oapc_bin_struct_dyn_data contains definitions and handling descriptions for dynamic data that
can be created by a device dynamically (e.g. in stand-alone mode):

struct oapc_bin_struct_dyn_data
{
 unsigned int UID;
 char fmtString[DYN_DATA_MAX_STRING_LENGTH+1];
 unsigned int type;
 unsigned int flags,param1,param2,param3;
 unsigned int uScaleX,uScaleY;
 int snStartValue;
 int snResetAt;
 unsigned short snIncrement,snBeatCount,snBeatOffset;
 unsigned char snNumericBase,snMinDigits;
 int timeOffset;
 int res1,res2,res3,res4,res5,res6,res7,res8;
}

UID – unique identifier, used to modify it from outside e.g. on a stand-alone device

fmtString – string that contains the changeable text / the format string with some placeholders for automatically
changeable parts of the string according to BeamConstructs format definition

type – specifies the type of element to be used (which font or which barcode type)

flags, param1, param2, param3 – additional parameters belonging to creation of base element, their meaning
and usage depends on the type of the element to be created

uScaleX, uScaleY – scaling factors in X and Y direction

snStartValue – value to start serial number counting at

snResetAt – value to reset serial number count to start value, does not apply when it is smaller than
snStartValue

snIncrement, snBeatCount, snBeatOffset – counting definitions increment and beat

snNumericBase, snMinDigits – numeric base for displayed serial number

timeOffset – time value offset (in unit seconds)

res1, res2, res3, res4, res5, res6, res7, res8 – reserved for later usage, have to be set to 0

2.5 Configuration XML Structure

Plug-ins that require additional data from the user can send a XML-structure to the main application. Within

43

that structure a plug-in can define which parameters have to be displayed to the user, which data type has to
be used for these parameters, within which valid range the user can enter new values for them and much
more.

All these information are taken from the main application to display a nice configuration dialogue.

Following only the special tags are described that have to be used to define such a configuration XML
successfully. Independent from that the XML itself need to be well-formatted and complete. For more
information about the XML basics please refer to the related specifications.

The XML structure itself needs to be UTF-8 encoded, so it has to start with

<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>

The ControlRoom-specific data have to be encapsulated within a oapc-config tag, so everything that is
described within the following sections have to be located between a <oapc-config> and a </oapc-
config> tag.

Several additional sub-tags then describe the layout of the configuration dialogue, the elements and their
usage. These sub-tags are described in following sections.

2.5.1 The Symbol Image for the Flow Editor

All elements that can be put together and connected by data flows are displayed within the Flow Editor using
a special symbol. A plug-in can provide such an image too so that it is displayed within the Flow Editor. That
image has to be handed over within the XML structure Base-64-encoded between two tags <flowimage>
and </flowimage>. Following format is necessary:

– size 106 x 50 pixels

– resolution 1..24 bit

– symbols for input and output connectors at defined positions (you can use an base image out of the
SDK to create an own one)

– PNG format (binary format)

– Base-64 encoded

The Base-64 encoding can be done with several tools that are available for free or by using the online
service at http://www.motobit.com/util/base64-decoder-encoder.asp. This operation creates a string out of
the binary data of the image that can be used between the flowimage-tags directly.

PLEASE NOTE: the flow image has not to be put into XML structures that define custom configuration
possibilities within the HMI editor, it is relevant for flow plug-ins or for the flow-part of an HMI plug-in only!

2.5.2 Dialogue Layout and Parameter Definitions

The parameters that belong to a definition of a configuration dialogue have to be placed between two special
tags <dialogue> and </dialogue>. They define that everything between them belongs to the
configuration dialogue that is displayed to a user. On next level a tab pane is defined where the user
interface elements and the related values have to be defined. For every separate tab one separate definition
of type <general></general>, <dualpanel></dualpanel>, <stdpanel></stdpanel>,
<parampanel></param> or <helppanel></helppanel> has to be set.

Within such a tag that defines a tabbed pane the definitions for the user interface elements, the parameters,
its default values, measurement units and default values have to be placed. These tags have to be located
between param-tags and are described in the following section. So at this point the XML-structure can have
the following format:

44

http://www.motobit.com/util/base64-decoder-encoder.asp

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<oapc-config>
<flowimage>iVBORw0KGgoAAAANSUhEU...</flowimage>
<dialogue>
 <general>
 <param name=”...” text=”...”>

 your parameter definitions here as specified below
 </param>
 </general>
</dialogue>
</oapc-config>

The param-tag can exist several times here, every appearance of it defines one additional parameter and its
special appearance within the user interface. It consists of several additional tags, some of them are
required, some of them optional. The following sections will describe which parameter tags will support which
tags for what purpose.

2.5.3 Tab Pane Types

There are several types of tab panes are supported:

– The tags <general></general> are used to define a new tab pane. All user interface elements
specified by the <param></param>-tags are located from top to bottom directly below of each
other. Within such a general tab pane the name input field and – if valid for this type of plug-in – the
cycle time input field is linked into by the main application automatically. If a plug-in does not define a
general tab pane it is added by the main application automatically containing at least an input field
for the name of the plug-in. For a plug-in not more than one general tab pane can exist.

– When the tag <dualpanel></dualpanel> is used, the user interface elements are placed in
pairs. That results in a layout like it is known from the element configuration dialogue of the HMI
Editor. This layout with pairs of elements is intended to be used for state-dependent configurations
that are triggered by the digital input 0. Because of that the two rows of elements get a header
automatically. This tag supports the attribute “text” which expects a string value that defines the
name of the panel that is shown as the title of the tab-pane.

– The tags <stdpanel></stdpanel> define a panel similar to the general panel but there the
application does not link any additional input fields into. Beside of that a standard panel can exist
more often than only one time. This tag supports the attribute “text” which expects a string value that
defines the name of the panel that is shown as the title of the tab-pane.

– The tags <parampanel></parampanel> enclose some special definitions of fields that give the
possibility to define parameter numbers, parameter values and the possibility to read the current
parameters value out of the device by pressing a “Read Value” button that is assigned to these input
fields. This tag supports the attribute “text” which expects a string value that defines the name of the
panel that is shown as the title of the tab-pane.

– Using the tags <helppanel></helppanel> a special tabbed pane can be defined that can't be
used for parameter input but for plain texts describing the input and output connectors and their
behaviour of a plug-in; for a description of the help-panel-tags please refer below

2.5.4 Input Fields

Following an overview is given about all elements that can be put into a tab pane. Within the XML hierarchy
these elements are located within tab pane tags so that these input elements can be added to these panes.

These fields are always encapsulated by a tag <param></param> which itself contains two mandatory

45

attributes:

– name – the name of the parameter; this name can be chosen freely and is used when the
parameters value is returned using function oapc_set_config_data(

– text – the text that is displayed in front of the input field, here a short name has to be given that
tells the user which kind of data have to be entered here; this text can be chosen freely

2.5.4.1 Text Input Fields

A text input field is a single line field that expects data of type “string” that can be entered by the user freely.
It accepts following tags:

– <type>string</type> - the type tag “string” specifies the type of the input element

– <default> … </default> - within these tags a default value has to be specified; this value is
used as predefined value within the text input field;
PLEASE NOTE: when a plug-in is called for the first time this tag has to be used to hand over a
default value, elsewhere the stored value has to be displayed here so that data changed by the user
are used here when the configuration dialogue of this plug-in is called repeatedly

– <min> … </min> - this tag requires a number that specifies the minimum number of characters
that have to be entered by the user

– <max> … </max> - this tag expects a number that is used to limit the users input to that number of
characters

– <unit> … </unit> - this is an optional tag, if it exists it appends a short text behind the input field
to give a measurement unit; here a short text (1..5 characters) can be chosen freely

– <state>disabled</state> - this is an optional tag, when it is found the user interface element is
disabled so that no changes can be made

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.2 Integer Input Fields

A integer input field is a single line field that expects non-floating point numbers that can be entered by the
user freely. It accepts following tags:

– <type>integer</type> - the type tag “integer” specifies the type of the input element

– <default> … </default> - within these tags a default value has to be specified; this value is
used as predefined value within this number input field;
PLEASE NOTE: when a plug-in is called for the first time this tag has to be used to hand over a
default value, elsewhere the stored value has to be displayed here so that data changed by the user
are displayed here when the configuration dialogue of this plug-in is called repeatedly

– <accuracy> … </accuracy> - using this tag a integer value can be given, that specifies the
shown accuracy of a floating point number. Here the given value should be bigger than 0 and
specifies the number of post decimal positions to be shown in UI for this floating point type. As an
example: when a value of 2 is given, a value of “1” will always be shown as “1.00”

46

– <min> … </min> - this tag requires a number that specifies the minimum value the entered
number is allowed to have

– <max> … </max> - this tag expects a number that is used to specify the maximum number a user
is allowed to enter

– <unit> … </unit> - this is an optional tag, if it exists it appends a short text behind the input field
to give a measurement unit; here a short text (1..5 characters) can be chosen freely

– <state>disabled</state> - this is an optional tag, when it is found the user interface element is
disabled so that no changes can be made

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.3 Floating Point Number Input Fields

A floating point number input field is a single line field where floating point numbers can be entered by the
user freely. Here following tags are accepted:

– <type>float</type> - the type tag “float” specifies the type of the input element

– <default> … </default> - within these tags a default value has to be specified; this value is
used as predefined value within this number input field;
PLEASE NOTE: when a plug-in is called for the first time this tag has to be used to hand over a
default value, elsewhere the stored value has to be displayed here so that data changed by the user
are displayed here when the configuration dialogue of this plug-in is called repeatedly

– <min> … </min> - this tag requires a number that specifies the minimum value the entered
number is allowed to have

– <max> … </max> - this tag expects a number that is used to specify the maximum number a user
is allowed to enter

– <unit> … </unit> - this is an optional tag, if it exists it appends a short text behind the input field
to give a measurement unit; here a short text (1..5 characters) can be chosen freely

– <state>disabled</state> - this is an optional tag, when it is found the user interface element is
disabled so that no changes can be made

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.4 Combo Box Fields

47

A combo box consists of a list of predefined values where the user can choose from. Here no parameters
and values can be used by the user that are not predefined, only one out of a list of possible values can be
selected. The value parameters that are accepted and returned when such an element is used, are the 1-
based index number of the chosen element, so the order of the data to chose from is important.

Here following tags are accepted:

– <type>option</type> - the type tag “option” specifies the type of the input element

– <value> … </value> - this tag can exist several times, it specifies the elements in the list to
choose from; here every tag defines one entry, the order of appearance of the tags is equal to the
order of appearance within the combo box

– <unit> … </unit> - this is an optional tag, if it exists it appends a short text behind the input field
to give a measurement unit; here a short text (1..5 characters) can be chosen freely

– <state>disabled</state> - this is an optional tag, when it is found the user interface element is
disabled so that no changes can be made

– <default> … </default> - within these tags a default value has to be specified; this value is
used to preselect one element of the combo box

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.5 Colour Chooser Button

This type adds a button to the panel that opens a colour chooser dialogue when it is pressed. The button
itself uses the chosen colour.

Here following tags are accepted:

– <type>colourbutton</type> - the type tag “option” specifies the type of the input element

– <value> … </value> - this tag specifies the default colour of the button in format 0xBBGGRR

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.6 Font Chooser Button

Using this tag a button can be defined for the configuration panel the user can use to choose a font. This tag
type is more specific than the other ones: while for a standard element exactly one parameter value is given
back to the plug-in a font definition consists of different parameters. Therefore for every font chooser button
element several parameters are given back: point size, style, weight and face name. They are given back
during separate calls of oapc_set_config_data(). Here the name that identifies the parameter consists

48

of the name defined within the XML-structure via <name></name>tags, an underscore and one of the
additional identifiers “pointsize” (32 bit unsigned integer for the size of the font), “style” (32 bit unsigned
integer for the character style), “weight” (32 bit unsigned integer for the thickness of the font) and “facename”
(string for the name of the font).
Following tags can be used here:

– <type>fontbutton</type> - this tag defines the font selector button: a simple button with a bigger
size that shows the currently selected font using a fixed text that can't be changed

– <pointsize>...</pointsize> - the size of the font in unit points

– <style>...</style> - the style of the font, here implementation dependent flags are used that
should be set by the main application only; this value should be initialized with 0 when a font definition is
set to a default value

– <weight>...</weight> - the weight of the font, here implementation dependent values are used that
should be set by the main application only; this value should be initialized with 0 when a font definition is
set to a default value

– <face>...</face> - the name of the font; this name may be platform-dependent, when the specified
font doesn't exists on the target platform the main application automatically chooses a similar one

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags the
name of a checkbox has to be given, when it is set, the own element is enabled, when it is unchecked, it
is disabled; using this way dependencies can be created where elements are enabled only in case a
specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled only
in case a specific option is turned on via a checkbox

2.5.4.7 Check Box

This type adds a check box that supports two selection states “checked” and “unchecked”.

Here following tags are accepted:

– <type>checkbox</type> - the type tag “checkbox” specifies the type of the input element

– <default> … </default> - this tag specifies the default value of the check box, here the values
0 and 1 are allowed

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.8 File Load Selection

This type adds an input field for a file to load and a button that opens a file open dialogue when it is pressed.

Here following tags are accepted:

– <type>fileload</type> - the type tag “fileload” specifies the type of the input element

49

– <default> … </default> - this tag specifies a default file that can be used for loading; here a
string is expected that meets the requirements of the underlying platforms file and path name syntax

– <ffilter> .. </ffilter> - file filter definitions for the file types that can be loaded; here
different file descriptions and extensions can be defined in format “description|
.extension|..”. Here e.g. “Text File|.txt;*.text|All Files|*” gives the user the
possibility to choose between two predefined file types: text files with extension .txt or .txt and all
other files independent from their extension

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.9 File Save Selection

This type adds an input field for a file to be saved and a button that opens a file save dialogue when it is
pressed.

Here following tags are accepted:

– <type>filesave</type> - the type tag “filesave” specifies the type of the input element

– <default> … </default> - this tag specifies a default file that can be used for saving; here a
string is expected that meets the requirements of the underlying platforms file and path name syntax

– <ffilter> .. </ffilter> - file filter definitions for the file types that can be saved; here
different file descriptions and extensions can be defined in format “description|*.extension|..”. Here
e.g. “Text File|*.txt;*.text|All Files|*” gives the user the possibility to choose between
two predefined file types: text files with extension .txt or .txt and all other files independent from their
extension

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.4.10 Select Directory

This type adds an input field for a path to a directory and a button that opens a directory selection dialogue
when it is pressed by the user.

Here following tags are accepted:

– <type>dirselect</type> - the type tag “dirselect” specifies the type of the input element

– <default> … </default> - this tag specifies a default directory path that can be used for
loading; here a string is expected that meets the requirements of the underlying platforms path name
syntax

50

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.5 Param-Panel Fields

Within a parameter panel only one type of sub-tags is allowed that specifies the combination of parameter
number input field, parameter value input field, their allowed ranges and default values and implicitly defines
the button to read the value of such a parameter number. Every of these parameter definition sets is
encapsulated within a tag that may look like this:

<param text="Custom Parameter 1">
 <paramcol name="custparam1" type="integer" default="10" min="0" max="255" />
 <valuecol name="custvalue1" type="integer" default="42" min="-32767"
max="32767" />
</param>

The attribute “text” in main tag <param> specifies the name of the parameter that is shown in first column of
the panel. The enclosed tag <paramcol> specifies the input field for the column that shows the parameters
number and <valuecol> the input field for the column that contains the input field for the value that is
assigned to this parameter. The button to read out the current parameters value is placed in fourth column
within the panels layout. Both inner tags support the following attributes that specify their behaviour:

– <name> – the internal name as it is used to return the value back to the plug-in by using function
oapc_set_config_data()

– <type> – the type of the input field, here “integer” and “float” are allowed

– <default> – the default value to be shown within the input field

– <min> and <max> – the minimum and maximum values the parameter number or parameter value
may have, when the user enters a value outside of this range the application limits them
automatically.

– <enableon> … </enableon> - this tag can be used to enable/disable the field; between the tags
the name of a checkbox has to be given, when it is set, the own element is enabled, when it is
unchecked, it is disabled; using this way dependencies can be created where elements are enabled
only in case a specific option is turned on via a checkbox

– <disableon> … </disableon> - this tag can be used to disable/enable the field; between the
tags the name of a checkbox has to be given, when it is set, the own element is disabled, when it is
unchecked, it is enabled; using this way dependencies can be created where elements are disabled
only in case a specific option is turned on via a checkbox

2.5.6 Help-Panel Fields

Following the special tags of a help-panel are described. These special tags are encapsulated using the
help-panel definition <helppanel></helppanel> and do not offer user interaction. They are used to
describe the functionality of input and output connectors of a plug-in.

51

2.5.6.1 Input Connection Tags

Input connectors are defined using the tags <inx></inx> where x is a number in range 0..7 and stands for
the input number that is described here. A short, descriptive text has to be set between these tags to be
displayed within the help-panel. So as an example a tag line

<in0>Clock input for data acquisition</in0>

would result in a help-panel that contains a line for input “IN0”, its data type and the description “Clock input
for data acquisition” for that input.

2.5.6.2 Output Connection Tags

Output connectors are defined using the tags <outx></outx> where x is a number in range 0..7 and
stands for the output number that is described here. A short, descriptive text has to be set between these
tags to be displayed within the help-panel. So as an example a tag line

<out7>Retrieved text data</out0>

would result in a help-panel that contains a line for output “OUT0”, its data type and the description
“Retrieved text data” for that output.

2.5.7 Example

Following a short example is given how a valid XML structure can look like. Some more examples can be
found within the sources of the different plug-ins that are available within the SDK.

<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>
<oapc-config>
 <flowimage>iVBORw0KGgoAAAANSUhEUgAAAGoAAAAyBAMAA...</flowimage>
 <dialogue>
 <general>
 <param name=”ip” text=”IP”>
 <type>string</type>
 <default>192.168.1.1</default>
 <min>7</min>
 <max>16</max>
 </param>
 <param name=”port” text=”Port”>
 <type>integer</type>
 <default>1900</default>
 <min>1</min>
 <max>65535</max>
 </param>
 <param name=”mode” text=”Mode”>
 <type>option</type>
 <value>Use mode of transmitter</value>
 <state>disabled</state>
 <default>1</default>
 </param>
 </general>
 </dialogue>
 <helppanel>
 <in0>Transmit text data</in0>
 <out0>Received text data</out0>

52

 </helppanel>
</oapc-config>

This is a very simple example that uses three different kinds of configuration parameters. First of all the head
of the XML-structure is given, then the main tag for the ControlRoom configuration is set that encapsulates
all that data that are watched by the main software. So if any tags are located outside <oapc-config> and
</oapc-config> they will be ignored by the main application.

Next the image is handed over, here within the example the Base-64-encoded data are not given fully.

Afterwards the definitions of the configuration dialogue and the general tab pane are set. Here three
configuration fields are used, one to enter an IP number as a string, one to enter a port number as an integer
and one to choose a mode out of a list of modes. The last element consists only of one possibility to choose
from, therefore it is disabled.

To specify an IP the user has to enter a minimum of 7 characters and a maximum of 16, otherwise the main
software would not accept the entered value. Here as default the IP 192.168.1.1 is given. If the IP is changed
by the user and this dialogue is opened for a second time the default-value of the IP of course can't be
192.168.1.1 any longer, now the plug-in would have to send the changed value.

The integer input field for the port number works similar, it defines a default number of 1900 and specifies the
valid range 1..65535. If the user would enter a larger or smaller value the main application would not accept
this value due to the allowed range specified by <min></min> and <max></max> tags.

The last field is a special one, here the <value>-tag defines one single option to choose from. After there is
only one pair of this kind of tag the combo box has no options where somebody really could choose from.
Therefore it is disabled and the only available option is set as default value.

Next a help-panel is defined. It contains a description of the input and output connections of this plug-in, here
a short description is given for input and output number 0 (the first one).

2.6 Developing own plug-ins

The SDK provides several plug-ins that are distributed within the standard software package. They are
provided in source code and can be used as starting point for the development of own plug-ins or for further
modifications and for extending their functionality. To start with the programming of external plug-ins it is
recommended to use the following examples:

– libio_e1701m_stepper – Flow plug-in that accesses the E1701M 4-axis motor controller

– libio_clock – hardware-independent Flow plug-in that provides time information

Both are very simple in its structure and therefore easy to understand. After their working principle is clear
the step over to the more complex HMI plug-ins can be made, here example Plug_ins can be found in sub-
folder libio_hmi_*.

3 Localisation

3.1 Working Principle

All OpenAPC software package components use a translation and localisation concept that is very simple
and bases on plain text files that can be edited easily. The selection of the correct language file is done by
the application automatically, here the default language of the underlying operation system is used. So no
user interaction or configuration is required.

53

3.2 Choosing the Correct Translation File Name

First of all the names of the files that contain the translations have to be chosen. The base file names are

– openplayer_xx_YY.property, openplayer_xx.property – for the texts that are used within the
OpenPlayer, OpenEditor and OpenDebugger

– openapc_xx_YY.property or openapc_xx.property – for the texts that are used within OpenEditor
and OpenDebugger

– construct_xx_YY.property or construct_xx.property – for the texts that are used within
CNConstruct

– common_xx_YY.property or common_xx.property – general texts that are used by all
applications

– custom_xx_YY.property or custom_xx.property – an additional translations-file that can be used
for own translations (e.g. texts that are defined in user interface elements); this file does not exist by
default and therefore will not be overwritten during installation of software updates

Here “xx” and “YY” specify the language: “xx” is the general language (according to ISO 639-1, compare to
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) and “YY” describes the country code (according to
ISO 3166, compare to http://www.iso.org/iso/english_country_names_and_code_elements).

An example: if one of the OpenAPC applications is started on an English system that is located in United
Kingdom, it tries to load the translation files openplayer_en_GB.property and openapc_en_GB.property.
If they can't be found, within a next step it tries to find general English language files
openplayer_en.property and openapc_en.property. If that fails too it falls back to the internal default
language.

So you are open to use both names with the language code and the country code or only with the language
code. In latter case you cover more language variants but you are not able to take care about regional and
country-related pecularities.

The files itself have to be deployed within the sub-folder “translations” of the applications installation location.
In case a file can be found there at start up, it is used by the applications automatically.

3.3 Translating the Applications

The contents of a language file are quite simple: it is a plain text file in UTF-8 encoding that contains pairs of
values that are separated by “ = “ (space, equal-sign, space). On the left side of these separators the
original, default texts can be found, they can't be edited and never should be changed. On the right side you
can place your translation. So following rules apply to such a language file in order to create a valid
translation for a language:

– the file has to be stored with UTF-8 encoding

– the original texts on the left side never have to be changed

– the delimiter between original and translated text has to be a combination
“space, equal sign, space” (“ = “)

– translations can't be done using different lines, they have to be placed in one line directly after the
original text and the delimiter characters

– you can add a “\n” to get a line break wherever the original text makes use of such a line break too
(Example: a text “this is\nthe second line” would result in an output

this is
the second line

54

http://www.iso.org/iso/english_country_names_and_code_elements
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

only when the original text also makes use of the “\n” symbol)

An example to make it more clear:

My original text = Mi texto original
This is my\noriginal text = Este es mi\ntexto original

Here the original texts stay on the left side, within the second line the special “\n” symbol is used. That
means, that also the translation can make use of a line break here. In both cases the text on the left side is
specified by the application and has not to be modified. On the right side the translated text is placed (this
example uses a language where we think it could be Spanish). So for such an example the language file
could have e.g. the name openapc_es.property.

After the original texts are fixed and defined by the contents of the application you have to use an existing
translation or the translation file skeleton that comes with the SDK. Copy that file, set the correct name for it
and extend its contents by your translation – that's all!

3.4 Creating own Translations

The SDK provides some files openapc_xxx.property, openplayer_xxx.property, construct_xxx.property and
common_xxx.property that can be used as starting point for own translations. Here all the used (default)
English texts are contained as well as their counterparts in a language that is specified by the “xxx” part of
the name. For translating them the localised texts have to be replaced by the ones of the new language and
the files have to be renamed according to the description above.

55

4 ControlRoom Interface

The interface described here can be used to connect ControlRoom to other applications. This connection can
be used to remote control these other applications, to remote control the ControlRoom player, to transfer
data and information or for other purposes.

The interface described here is designed dynamically on ControlRoom side. So the end user is free to
implement an own interface structure to connect to other applications. Nevertheless it is recommended to
use the structure specified here for interfacing between applications due to the following reasons:

– the standardized interfacing mechanism is fully tested

– it will be further developed without efforts on your side

– standardised solutions are widely supported

– interface implementations for external applications are provided with the SDK and can be used freely
according to the OpenAPC-Dual-License

4.1 Overview

Currently the interface to other applications is done via TCP/IP only. Here ControlRoom player acts as client
(using the “Network Client”-plug-in), the application to connect to has to provide a server socket. The
communication between both sides is done asynchronously: once ControlRoom has connected to the other
application both sides can send data, there is no strict handshake specified. Depending on what has to be
done with this interface it could be necessary to implement such a handshake where one side sends a
request and the other side answers to it but it is not required generally.

The data that are transferred between both sides are organized in pairs consisting of a command (which is a
plain, unique text identifier) and the data (here the same data types are used like within the application:
digital, numeric, characters and binary data).

On ControlRoom side these pairs can be generated and decoded using the converters for CMD-Pairs
(please refer to the manual, description of flow elements / converters). On side of the interfaced application
these pairs are generated and decoded by the interface.

4.2 Data Flow

The data flow between the interfaced applications is as flexible as the whole ControlRoom package: the
purpose and sense of the commands and their related data are not predefined, they have to be used
depending on what has to be done with the interface.

As an example: an external application has to be remote-controlled. Within the ControlRoom HMI a button is
provided that has to control the remote application. Beside of that a static line is provided that can be toggled
between red and green background colour depending on its digital IN0. This static line has to act as
feedback for the result that is sent from the applications.

The related ControlRoom flow structure now looks as follows: the output of the button is sent to a “Digital to
CMD/Value-Pair” flow element. Here the digital value is assigned to a unique command name, e.g.
“OAPC_SWITCH_ON”. Afterwards this pair of data (a character and a digital data line) are connected with
the “Network Client” that sends them to the external application. This network client plug-in has to operate in
mode “Command/Value - transmit only pairs” to support the CMD/Value-pairs.

As soon as the external application receives this command “OAPC_SWITCH_ON” together with a value “1” it
reacts on this value and sends a feedback: here a command/value pair is emitted, the application sends a
command “APP_SWITCHED_ON” together with a digital “1”.

56

This pair of data is received at the same “Network Client”. Here the received data are converted using a
“CMD/Value-Pair to Digital” converter. Here exactly one of its digital outputs is specified to react on the
command “APP_SWITCHED_ON” and to output the related digital signal. This digital output is connected to
IN0 of the line – so depending on the reaction of the external application this static line will change its
behaviour.

The principle described here can be used to implement complex dependencies with external applications.
For such applications one thing is important: the command names that are used together with specific data
have to be unique so that the transferred data can be assigned non-ambiguous.

It is recommended to specify command names that start with the name of the application that emits the
CMD/value pair. So for an ControlRoom project with the name “myProject” a prefix “CRMYPRJ_” could be
used.

4.3 Example Applications

All implementations that are described within the following sections provide an example application that
demonstrates their behaviour and usage. This example can be used together with the ControlRoom project
file “Example1.apcp”.

The example project contains a toggle button to emit a digital value, a number field and a text field for
numerical and character data and a simple button to send an exit command to the remote application. These
elements send data to the application, the application responds to them and the response is displayed using
a rectangle, and write-protected number and text fields.

The example application itself checks for commands named ECHO_DIGI, ECHO_NUM and ECHO_STR to
send back the related data using the commands REPLY_DIGI, REPLY_NUM and REPLY_STR that are
handled by the example project. Beside of that the controlled application reacts on an command EXIT when
the related digital data is “1”: it terminates itself in this case. So this example demonstrates nothing more
than sending data to the application and echoing them back to the project – but that is the functionality that is
necessary for remote-controlling or communicating with external applications.

4.4 Interface Implementations

The SDK provides different interface implementations that can be used directly within own applications.
Following these implementations are described in detail.

All provided interfaces can be found within the SDK's sub-folder “interface”.

4.4.1 Java ControlRoom Interface

The Java implementation of the ControlRoom interface uses the concept of a listener. This listener provides
methods that are called whenever data are received. So here an own class has to implement this listener
and provide these methods to receive the data easily.

Following classes are provided in package com.oapc.iserver to be used by an application:

– OAPCInterface – the interface itself that manages the client connections, data reception and
transmission from and to them

– OAPCListener – the listener interface that has to be implemented in an own class to get informed
about data received from ControlRoom OpenPlayer

– SocketEntry – an implementation-internal class that is handed over to the application in some cases
and that can be used to identify a specific data connection and to transmit data to one connected
OpenPlayer exclusively

57

To use the Java ControlRoom interface following steps are necessary:

– implement an own (inner) class that implements OAPCListener and create an object of this class

– create an object of type OAPCInterface and add the precedent created listener to this one

– react on data transmitted from the OpenPlayer dependent on their purpose

– transmit data to all connected OpenPlayers depending on the purpose of the application

4.4.1.1 The Interface OAPCListener

This interface has to be implemented in an own class and has to provide several methods that are called
from the OAPCInterface object where this listener is registered at:

public void commandReceived(String cmd,String value,SocketEntry socket)

This method is called whenever a character value was received, cmd contains the (unique)
command identifier, value the transmitted text data and socket identifies the connection where these data
are received from; here socket can be used to submit an answer to this client immediately.

public void commandReceived(String cmd,float value,SocketEntry socket)

This method is called whenever a numerical value was received, cmd contains the (unique)
command identifier, value the transmitted number and socket identifies the connection where these data
are received from; here socket can be used to submit an answer to this client immediately.

public void commandReceived(String cmd,boolean value,SocketEntry socket)

This method is called whenever a digital value was received, cmd contains the (unique) command
identifier, value the transmitted data (state true or false) and socket identifies the connection where
these data are received from; here socket can be used to submit an answer to this client immediately.

public void stateChanged(int state,String message,SocketEntry socket)

This method informs about changes at the interface. Parameter message is a short, descriptive text
that specifies these changes in a human-readable way and socket is the client connection where that
change happened. Please note: depending on the type of state change socket can be null, e.g. in cases
where the client got lost and data can't be transmitted any longer to this client. The first parameter state
specifies which kind of state change happened, here following constants are used:

– STATE_NEW_CONNECTION – a new connection to the interface was established successfully

– STATE_CONNECTION_CLOSED – a connection was closed so that it is no longer available for
communication

– STATE_CONNECTION_ERROR – a connection was interrupted without being closed normally so that it is
no longer available for communication

– STATE_DATA_RECEIVED – new data have been received from an OpenPlayer, this state is followed by
a call to method commandReceived()

4.4.1.2 The Class OAPCInterface

58

This class provides the general communication functionality:

public OAPCInterface()

This is the default constructor that creates a server socket using default port 1810 to connect to from
an OpenPlayers project.

public OAPCInterface(InetAddress bindAddr)

Using this constructor a new object of this type can be created that establishes a server socket that
binds to the default port and the address specified by bindAddr.

public OAPCInterface(int port, InetAddress bindAddr)

Using this constructor a new interface object can be created using a custom port number and the
specified address bindAddr to bind this server socket to. When bindAddr is set to null the default address
0.0.0.0 is used.

public void setAuthentication(String uname,String pwd)

When the network client plug-in used within the ControlRoom project is configured to use
authentication, this method has to be called in order to set the correct user name uname and password pwd.
Whenever a connection is established that uses no or different authentication data, the related connection is
rejected and no communication is possible between both sides.

public void close()

This method has to be called when the interface connection is no longer required: it closes the
connections to all clients and removes the server socket. After this method has been called no more data are
received and sending of data is no longer possible.

public void addOAPCListener(OAPCListener listener)

Using this method a new listener class can be registered at the interface object. This listener
then will be informed about every data received and about every connection state change.

public void removeOAPCListener(OAPCListener listener)

This class removes an already registered listener so that it is no longer informed about state
changes and data receptions.

public void sendCommand(String cmd,String value,SocketEntry socket)

With this method a command/value pair can be transmitted. Here cmd is the (unique) command
identifier and value is the string that is assigned to this command. When socket is set to null these data
are sent to all connected clients, when a valid object of type SocketEntry is specified instead of this only
the single OpenPlayer connection will receive these data that is assigned to the given SocketEntry.

public void sendCommand(String cmd,float value,SocketEntry socket)

With this method a command/value pair can be transmitted. Here cmd is the (unique) command
identifier and value is the number that is assigned to this command. When socket is set to null these
data are sent to all connected clients, if a valid object of type SocketEntry is specified instead of this only
the single OpenPlayer connection will receive these data that is assigned to this SocketEntry.

59

public void sendCommand(String cmd,boolean value,SocketEntry socket)

Using this method a command/value pair can be transmitted. Here cmd is the (unique) command
identifier and value is the digital value (true or false) that is assigned to this command. When socket is
set to null these data are sent to all connected clients, if a valid object of type SocketEntry is specified
instead of this only the single OpenPlayer connection will receive these data that is assigned to this
SocketEntry.

4.4.1.3 The Class SocketEntry

This class is used internally only, it doesn't needs to be created by the application. Therefore it does not
provide any methods or members that could be used directly.

4.4.2 C/C++ and other languages ControlRoom Interface

The C/C++ interface to ControlRoom does not make use of a special implementation, it uses the
oapc_iface_-functions of liboapc as described below. This is a general shared library interface. The
headerfile “liboapc.h” can be used within C/C++ applications, the shared library interface itself is not limited
to this language.

For a more detailed description please refer the section below, an example C application that uses this
interface can be found within the SDK in subfolder “interface”.

60

5 Interlock Server Connection

The Interlock Server is a separate, fast application that can be used to reflect the state of the visualisation
(which is running in OpenPlayer), to influence its state, to implement automatic sequences, to create
interlock dependencies and other things more.

Basically the Interlock Server is a TCP/IP server application that does nothing more than store data that are
sent to it and to inform all other connected applications when new data have been added or existing data
have been changed.

This section describes how it is possible to connect to this server from outside using own applications. For a
detailed description of configuration, set-up and possible usage scenarios of this server please refer to the
main application manual.

5.1 Data Flow

The data management and flow that is done by the Interlock Server is quite simple. Dependent on the
programming language there are small differences in implementation but the basic usage principle is always
the same:

– an application connects to the TCP/IP server socket of the Interlock Server

– now the application is able to send data to the server, these data are stored within the Interlock
Server, additionally the server submits these new or changed data to all other connected clients
(including the OpenPlayer)

– whenever other applications change data within the Interlock Server, the connected client application
is informed automatically, dependent on the name of the data now the application has to decide if it
will use these information or not

– as an additional feature a connected application is able to retrieve the data of a special data element
using its name or to retrieve all data (these data can be identified by their name too)

So whenever an external application changes a value that is connected to an element within the OpenPlayer,
this modification causes a response within it. Thus the visualisation can be manipulated out of such an
application. And vice versa the same is true: when a user or the data flow within the OpenPlayer changes a
HMI or a flow element that is mapped to the Interlock Server, all connected applications are informed about
this modification and therefore can react on such user input.

5.2 Example Applications

There is an example project “iserver_example1.apcp” available in SDK within directory “iserver”. This is an
demonstration project that requires the Interlock Server and uses it: it maps several internal user interface
elements to the server.

Additional there are several example scripts available in Java, Lua, IL (Instruction List) and C sources. When
these scripts/applications are used, the user input is managed by them and the user elements shown within
the OpenPlayer are manipulated by them. That is done via the data mapped in Interlock Server.

The example project consists of a “GO” toggle button and a strip of boxes that can be highlighted each.
When the toggle button is pressed the related information is sent to the Interlock Server. There the running
example application (or script, depending on which of the implementations is used) watches the related data
element. As long as the “GO” button is pressed and the related data element signals HIGH, the application
turns on and off the boxes – again via their representation within the Interlock Server – to offer a small light
show.

61

5.3 Interface Implementations

The SDK provides different interface implementations to access the Interlock Server which can be used
directly within own applications. Following these implementations are described in detail.

All provided interfaces can be found within the SDKs subfolder “iserver” (except the Java interface, the
related classes have been put together with the ControlRoom Interface implementation and therefore reside
in subfolder “interface”).

5.3.1 Java Interlock Server Interface

The Java implementation of an Interlock Server connection uses the concept of a listener. This listener
provides methods that are called whenever data are received. So here an own class has to implement this
listener and provide these methods to receive the data easily.

Following classes are provided in package com.oapc.iface to be used by an application:

– OAPCIServer – the interface itself that manages the connection to the server, data reception and
transmission from and to them

– OAPCIServerListener – the listener interface that has to be implemented in an own class to get
informed about data received from the Interlock Server

– IServerData – a storage class that is used to store data of different types and that has to be used to
transmit values to the server and to decode received data

To use the Java Interlock Server interface following steps are necessary:

– implement an own (inner) class that implements OAPCIServerListener and create an object of this
class

– create an object of type OAPCIServer and add the precedent created listener to this one

– react on data transmitted from the Interlock Server via the listener dependent on their purpose

– transmit data to the Interlock Server depending on the purpose of the application

5.3.1.1 The Interface OAPCIServerListener

This interface has to be implemented in an own class and has to provide a method that is called from the
OAPCIServer object where this listener is registered at:

public void dataReceived(String nodeName,int cmd,long ios,IServerData[] values)

This method is called automatically whenever new data are received from the Interlock Server, it can
be used to get data from the server and to react on state changes. Here nodeName is the name of the data
node that was changes or that is submitted due to a request to get data. The second parameter cmd gives
additional information why this method was called, following values are possible:

– OAPC_CMDERR_DOESNT_EXISTS is given in case data of a node have been requested that is not
known to the Interlock Server

– OAPC_CMD_GET_VALUE signals that the method is called as a result of a request to get a single
value out of the Interlock Servers data space

62

The parameter ios describes which data of which type are submitted with this method call. It consists of up
to eight OR-concatenated flags of type OAPC_xxx_IOy. Here xxx is a place holder for the type which can
be one of DIGI, CHAR or NUM and y is a number in range 0..8 which specifies which of the eight possible in-
or outputs contains these data.
The last parameter values is an array with a size of eight elements. Every element is related to one of the
eight possible IOs and is either null (when no data are available) or contains an object of type IServerData
that contains digital, numerical or character data according to the IO-flags given with cmd.

5.3.1.2 The Class OAPCIServer

This class contains the whole functionality that is necessary to communicate with the Interlock Server. It
extends a Java Socket to connect with the server, to send data to it and to check for data from there and to
call all registered listener objects when new data are available.

This class contains several constants as described below.

General constants:

MAX_NODENAME_LENGTH – definition for the maximum length of the name of an data element

MAX_TEXT_LEN – definition of the maximum length a text (character data) is allowed to have

MAX_NUM_IOS – definition of the maximum number of IOs one single data element may have

Error and return codes:

OAPC_OK – everything is OK, an operation was performed successfully

OAPC_ERROR_CONNECTION – a required connection could not be established

OAPC_ERROR_NO_DATA_AVAILABLE – this value is returned when data are requested for an output where
no new data are available at this moment

OAPC_ERROR_RESOURCE – a required resource could not be created/accessed

Following public methods and constructors can be used in order to interact with the Interlock Server:

public OAPCIServer()

Default constructor, a connection is established to a local Interlock Server using the default port
number; the constructor throws an IOException in case the connection to the server could not be established

public OAPCIServer(InetAddress connectAddr)

Constructor to create a connection using the Interlocks Server default port using the connectAddr
as IP of the server to connect with. This constructor may cause an IOException in case the connection to the
server could not be established.

public OAPCIServer(int port, InetAddress connectAddr)

Constructor to create a new connection to an Interlock Server using the port number port and the
address connectAddr. This constructor throws an IOException in case the connection to the server could
not be established.

public void close()

63

Closes the connection to the server and releases all resources. After this method was called no data
are received from the server and no data can be send to it any more.

public void addOAPCIServerListener(OAPCIServerListener listener)

Adds a listener object of type OAPCIServerListener to keep track of changes within the server
and to receive requested data.

public void removeOAPCIServerListener(OAPCIServerListener listener)

Removes a listener out of the list of currently registered listeners. The listener object that has to be
removed needs to be handed over in parameter listener.

public boolean connectionValid()

This is an elementary method, it tells a calling instance if the connection to the server is still valid or
not. Only in case this function returns true it is possible to send data to the server and to get informed about
changes via the listener.

public int requestData(String nodeName)

Requests the data of a specific node from the server; the response is not given directly but is sent
asynchronously to the connected listener(s). The parameter nodeName expects the name of the data node
to fetch the data for. This name is given when the listener is called to identify the received data. The method
returns OAPC_OK in case the request could be submitted successfully or an error code otherwise; in case the
operation failed the connection to the server was closed and this object can't be used any longer for
communication.

public int requestAllData()

Requests the data of all nodes from the server; the response is not given directly but is sent
asynchronously to the connected listeners;
PLEASE NOTE: dependent on the amount of data stored within the server this call may cause a heavy load
due to the number of transmitted data.
The method returns OAPC_OK in case the request could be submitted successfully or an error code
otherwise; in case the operation failed the connection to the server was closed and this object can't be used
any longer for any communication.

public int setData(String nodeName,long ios,IServerData[] values)

Using this method a bunch of up to eight data elements can be sent to the Interlock Server and set
for a specific data element. Here nodeName specifies the data node where the data have to be set at. This
name consists of the unique name of the data node and the direction “in” our “out” in style “/name/dir”.

The parameter ios is a bit mask that consists of or-concatenated OAPC_xxx_IOy constants and specifies if
and which IOs contain which kind of data; here the IO position (y) corresponds to the index position of the
"values"-array.
The last parameter values is an array of objects that contains the data to be sent according to the given
flags in ios. The elements of this array have to consist of objects of type IServerData.
This method returns OAPC_OK in case the request could be submitted successfully or an error code
otherwise; in case the operation failed the connection to the server was closed and this object can't be used
any longer for communication.

public int setValue(String nodeName,long io,IServerData value)

Using this method one single set of data can be sent to the Interlock Server and can be set for one

64

input or one output of a specific node. Here the parameter nodeName specifies the data node where the data
have to be set at, this name is constructed in style “/name/dir”.
Here the parameter ios does not expect several OR-concatenated IO-flags but a single constant of type
OAPC_xxx_IOy that specifies which IO has to be set using which kind of data. Here the IO position (y)
corresponds to the input/output number of the data node. The last parameter value keeps an object of type
IServerData that holds the data to be sent according to the given io.

This method returns OAPC_OK in case the request could be submitted successfully or an error code
otherwise; in case the operation failed the connection to the server was closed and this object can't be used
any longer for communication.

5.3.1.3 The Class IServerData

This class is used for storing character, digital or numerical data either to transmit them to the Interlock
Server or when received from there.

The storage and data identification is done via public member variables, all of them can be accessed directly
in order to access the stored values:

io – this variable stores constant of type OAPC_xxx_IOy which identifies the kind of data and the number of
the input it belongs to

digi - variable to store digital data, the contents of this variable are valid only in case a constant
OAPC_DIGI_IOy is stored in io

num - variable to store numerical data, the contents of this variable are valid only in case a constant
OAPC_NUM_IOy is stored in io

str - variable to store character data, the contents of this variable are valid only in case a constant
OAPC_DIGI_IOy is stored in io

public IServerData()

Default constructor, creates an object of type IServerData and intialises its public members to
default values, no data type is set.

public IServerData(boolean digi)

Construtor for an object of type IServerData that is initialized with an digital value. This
constructor does NOT set the io-information that identifies the data type, this public member variable has to
be set after construction and before this object is used for data submission.

public IServerData(double num)

Construtor for an object of type IServerData that is initialized with an numerical value. This
constructor does NOT set the io-information that identifies the data type, this public member variable has to
be set after construction and before this object is used for data submission.

public IServerData(String str)

Construtor for an object of type IServerData that is initialized with an character value. This
constructor does NOT set the io-information that identifies the data type, this public member variable has to
be set after construction and before this object is used for data submission.

65

5.3.2 C/C++ and other languages Interlock Server Interface

The C/C++ interface to the Interlock Server does not make use of a special implementation, it uses the
oapc_iserver_-functions of liboapc as described below. This is a general shared library interface. The
headerfile liboapc.h can be used within C/C++ applications, the shared library interface itself is not limited to
this language.

For a more detailed description please refer the section below, an example C application that uses this
interface can be found within the SDK in subfolder “iserver”.

5.3.3 Instruction List Interlock Server Interface

The Interlock Server can be accessed from an IL (Instruction List) script. Such a script can be used together
with an IL interpreter that comes with the OpenAPC package and is part of the ControlRoom application
bundle. After this interface is not a real source implementation but a separate interpreter application the
Instruction List commands and parameters and the IL interpreter ilPLC is described within the main manual.

5.3.4 LUA Interlock Server Interface

The Interlock Server can be accessed from a Lua script. Such a script can be used together with an Lua
interpreter that comes with the OpenAPC package and belongs to the ControlRoom application bundle. After
this interface is not a real source implementation in Lua language but a separate interpreter application the
special Lua commands and parameters and the Lua interpreter luaPLC is described within the main manual.

66

6 Shared Library liboapc

The software components of the OpenAPC package use one general, shared library “liboapc”. This library
contains several common functionalities that are ported for all platforms the OpenAPC software package is
available for (and some platforms where it currently doesn't runs on officially). This library is used by the
main application and by some of the external plug-ins but can be used in other applications too to have
platform-independent access to several platform-dependent functionalities.
Following the functions of this library are described so that it can be used by other plug-ins and applications.

The sources of the complete library liboapc are contained within the SDK.

All the functions described below are contained within the general header file “liboapc.h” that is provided by
the SDK. Beside of that also the header file “oapc_libio.h” might be necessary. This header file is responsible
for all plug-in related definitions but also contains some data that are used by “liboapc.h”.

The external library liboapc is divided into different functional sections that are described below.

6.1 TCP/IP Related Functions of liboapc

The TCP/IP-functionalities of liboapc can be found as source within the SDK in file “liboapcTCPFcts.cpp” and
contain several functionalities that are related to data transfers via a TCP/IP connection. All the functions
names start with oapc_tcp_:

int oapc_tcp_connect_to(char *address,unsigned short connect_port)

Using this function a TCP/IP connection to a remote server socket can be established. It requires the
address in number format “x.x.x.x” or a host name in format “www.domain.tld” and a port number
connect_port in range 1..65535 to connect with.

When the connection to the remote socket could be established successfully a number >0 is returned, in
case of an error -1 is used. The returned positive number is the identifier for the socket connection that was
opened, it has to be stored for later usage with data handling functions for sending and receiving.

void oapc_tcp_set_blocking(int sock,char block)

This function sets a valid socket that was opened using oapc_tcp_connect_to() or
oapc_tcp_listen_on_port() to blocking or non-blocking mode. When the functions
oapc_tcp_send() and oapc_tcp_recv() have to be used together with their timeout-feature a socket
has to be set to non-blocking before.
For the parameter sock the socket number is required as returned by the function that created this socket,
block specifies if this socket has to be set to blocking (=1) or to non-blocking mode (=0).

int oapc_tcp_send(int sock, const char *msg,int len, int flags,int msecs)

This function transmits data using a valid socket connection. Here sock is the socket that has to be
used for data transmission, msg is a pointer to the data block that has to be transmitted and len specifies
the length of this data block in bytes. Using the parameter flags some special transmission flags can be
given, currently only MSG_NOSIGNAL is supported on Linux (this flag is mandatory for Linux in order to avoid
application interruptions in case of a data transmission error).
The last parameter timeout specifies a time in msec that has to be used for data transmission at maximum.
This parameter is valid only when the related socket was set to non-blocking mode before by calling
oapc_tcp_set_blocking(). In this case the function returns after all data have been sent or latest after

67

the specified time-out has elapsed. In case the socket is set to blocking, the parameter timeout is ignored
and the function returns only after all data have been sent.
After finishing the function returns the number of bytes that really have been sent.

bool oapc_tcp_recv(int sock,char *data, int len,const char *termStr,long
timeout)

With this function data can be received from a valid and opened socket in case some are available.
The socket to read the data from is specified with parameter sock, data points to the memory area where
the received data have to be stored into an len specifies the maximum size of data that have to be read. In
case of ASCII-based data the parameter termStr can be used to define an additional condition for the end
of the data reception: when a character not equal to NULL is specified here the function returns as soon as
this character is received. In this case less data than specified by len are received.
The last parameter timeout specifies a time in msec that has to be used for data reception at maximum.
This parameter is valid only when the related socket was set to non-blocking mode using
oapc_tcp_set_blocking(). In this case the function returns after all data have been received or after the
termStr-character was found in the stream of received data or after the specified time-out has elapsed. In
case the socket is set to blocking, the parameter timeout is ignored and the function returns only after all
data have been received or after the termStr-character was found.
This function returns true in case all data could be received or the termStr-character could be found,
false otherwise.

void oapc_tcp_closesocket(int sock)

To finish all data transmissions and to clean up a socket this function has to be called. It shuts down
and closes the socket connection specified by parameter sock.

int oapc_tcp_listen_on_port(unsigned short port, char *bindToIP)

Using this function a server socket can be created that doesn't connects to a remote socket but waits
for incoming connections and is able to pick up these connections by calling function
oapc_tcp_accept_connection().
Here the parameter port specifies the port number the server socket has to listen at. This has to be a
number in range 1..65535. The port itself has to be unused, elsewhere this function will fail. On some
operating systems the usage of port numbers is restricted to users with special privileges so it is
recommended to use a value in range 1025..65535 here. The second parameter bindToIP specifies the IP
number in format “x.x.x.x” the server socket has to be bound to. In most cases this parameter will be set to
“0.0.0.0”.
When the function could create a socket connection successfully it returns a value >0 that is equal to the
socket identifier that has to be used for following operations. This socket has to be set to non-blocking mode
when the time-out-feature of the data sending/reception functions has to be used.
In case of an error the returned value is <0.

int oapc_tcp_accept_connection(int sock, unsigned long *remote_ip)

This function can be used for sockets created with oapc_tcp_listen_on_port() only and needs
to be called regularly in order to accept new incoming connections. Here the parameter sock specifies the
server socket that has to be checked for a new incoming connection. In case there is a new connection the
remote connections IP of it is stored in remote_ip.
When the function returns the socket of the newly accepted connection is returned and should be set to non-
blocking mode in case the timeout-feature of the data sending/reception functions has to be used with this
new socket. When the server socket is used in blocking mode this function will return only when a new
incoming connection was accepted. When the server socket sock is used in non-blocking mode the function
will return immediately. In this case it returns a value >0 only in case a new socket could be accepted.

68

6.2 Serial Interface Functions of liboapc

The serial interface functionalities of liboapc can be found as source within the SDK in file
“liboapcSerialFcts.cpp” and contain several functionalities that are related to data handling via the serial
interface of a computer. Here it doesn't matters if a real serial interface is used or if it is a serial interface
provided via the USB-port or via a converter like an USB-to-Serial adapter. All the function names start with
oapc_serial_. Following the data type of the handler of the serial interface is specified by the place-holder
<handle>. The data type is different for Windows and for POSIX operating systems, for Windows it is
defined as data type HANDLE for all other systems it is a plain int. For the usage of the functions described
here there is no difference, within an application that uses the serial interface with these functions no
difference has to be made due to these data types:

int oapc_serial_port_open(struct serial_params *serialParams,<handle> *fd)

This function tries to open a serial interface of a native serial port and to configure it using the
parameters according to the values specified with the structure serialParams. This structure contains the
following data that describe the port parameters:

struct serial_params
{
 char port[MAX_TTY_SIZE];
 unsigned short brate,databits,parity,stopbits,flowcontrol;
};

Here port is the operating system dependent name of the port that has to be opened (e.g. “COM1” or
“/dev/ttyS” or “/dev/ser0”). The following values specify the bitrate, the number of data bits, the parity
mode, the number of stop bits and the flow control mechanism that has to be used. Please note: here not the
required values are stored but index values that specify them. These index values are defined by the XML
configuration structure that has to be used for the set-up of the serial interface. Here the index values
returned by the main application can be used directly as index values for the parameters of the structure
above. It is recommended to use this standard structure in order to get the correct index values for the
different serial interface parameters:

<general>
 <param>
 <name>port</name>
 <text>Interface</text>
 <type>string</type>
 <default>%s</default>
 <min>4</min>
 <max>12</max>
 </param>
 <param>
 <name>brate</name>
 <text>Data Rate</text>
 <unit>bps</unit>
 <type>option</type>
 <value>110</value>
 <value>300</value>
 <value>1200</value>
 <value>2400</value>
 <value>4800</value>
 <value>9600</value>
 <value>19200</value>
 <value>38400</value>
 <value>57600</value>
 <value>115200</value>
 <value>230400</value>

69

 <default>%d</default>
 </param>
 <param>
 <name>databits</name>
 <text>Data Bits</text>
 <type>option</type>
 <value>5</value>
 <value>6</value>
 <value>7</value>
 <value>8</value>
 <default>%d</default>
 </param>
 <param>
 <name>parity</name>
 <text>Parity</text>
 <type>option</type>
 <value>None</value>
 <value>Even</value>
 <value>Odd</value>
 <default>%d</default>
 </param>
 <param>
 <name>stopbits</name>
 <text>Stop Bits</text>
 <type>option</type>
 <value>1</value>
 <value>1.5</value>
 <value>2</value>
 <default>%d</default>
 </param>
 <param>
 <name>flowcontrol</name>
 <text>Flow Control</text>
 <type>option</type>
 <value>None</value>
 <value>Xon / Xoff</value>
 <value>CTS / RTS</value>
 <default>%d</default>
 </param>
 <param>
 <name>uname</name>
 <text>Username</text>
 <type>string</type>
 <default>%s</default>
 <min>0</min>
 <max>%d</max>
 </param>
 <param>
 <name>pwd</name>
 <text>Password</text>
 <type>string</type>
 <default>%s</default>
 <min>0</min>
 <max>%d</max>
 </param>
</general>

Beside these parameters the serial interface is set to non-blocking mode automatically.

Please note: it is recommended to use this function only for native serial ports that are not USB-devices. For
USB-based serial interfaces where all these settings regarding bitrate, data bits, stop bits, parity anf low
control do not matter since they always work with the USB-speed of the device, please use function

70

oapc_serial_usb_port_open() instead!

In case the serial port could be opened and configured successfully the function returns OAPC_OK and
writes the handle of the opened interface into the variable where fd points to. In case opening or configuring
failed the function returns a code OAPC_ERROR_xxx.

int oapc_serial_usb_port_open(const char *portname,<handle> *fd)

This function tries to open a serial interface of a USB-based device which is not a native serial
hardware (in sense of legacy hardware with separate lines for RX and TX). Since such USB-devices always
work with the speed of the used USB-port, it is not necessary to specify any further serial interface
parameters beside the portname which identifies the port to be opened (which is “COMx” for Windows or
“/dev/ttyACMx” oder “/dev/ttyUSBx” or similar for Linux, where “x” is a number provided by the
operating system and which specifies the port).

In case the USB serial port could be opened, the function returns OAPC_OK and writes the handle of the
opened interface into the variable where fd points to. In case opening failed the function returns a code
OAPC_ERROR_xxx.

int oapc_serial_recv_data(<handle> fd,char *buffer,int toLoad,long msecs)

This function is deprecated and should not be used any longer, it will be removed in future software
versions. Please use oapc_serial_recv() instead!

int oapc_serial_recv(<handle> fd,char *buffer,int toLoad,char *termStr,long
msecs)

Using this function data can be received from the serial interface. The parameter fd specifies the
already opened port to read the data from, buffer points to the memory area where they have to be written
into and toLoad specifies the maximum number of bytes that have to be received and written to that buffer.
The last parameter msecs specifies a maximum time this operation may need for reception of data, when the
limit in milliseconds given here is exceeded, the operation is aborted.
This function returns the number of bytes that could be read really. This value may be smaller than the value
given in parameter toLoad in case the time-out value msecs was exceeded.
As a second exit condition the parameter termStr can be set to a value not equal to NULL, in this case the
function returns as soon as the string that is given here can be found within the received data.

int oapc_serial_send_data(<handle> fd,const char *msg, int len,int msecs)
This function is deprecated and should not be used any longer. It will be removed in future software

versions. Please use oapc_serial_send() instead.

int oapc_serial_send(<handle> fd,const char *msg, int len,int msecs)
With this function data can be send to the serial interface. The parameter fd specifies the open port

to send the data to, msg points to a memory area that contains the data to be send and len specifies the
maximum number of bytes that have to be send out of this buffer. The last parameter msecs specifies a
maximum time this operation may need for transmission of data, when the limit in milliseconds given here is
exceeded, the operation is aborted.
This function returns the number of bytes that could be sent really. This value may be smaller than the value
given in parameter len in case the time-out value msecs was exceeded.

void oapc_serial_port_close(<handle> *fd)

After all operations on a serial port have been finished and it is not used any longer, it has to be
closed. That has to be done using this function where a pointer to the serial interface's handle has to be
handed over. This function closes the serial port and initializes the handle to avoid that this – now invalid –
handle is used again.

71

6.3 Utility-Functions of liboapc

This set of functions provides different things that are used in nearly all kind of applications. These
functionalities of liboapc can be found as source within the SDK in file “liboapcUtilFcts.cpp” and their names
start with oapc_util_:

double oapc_util_atof_dot(const char *c)

This function converts a floating point number that is represented by an ASCII-string to a floating
point value. So this is similar to functions atof() but with one major difference: here conversion is
independent from current locale, this function always expects a dot as decimal delimiter. Thus it can be used
to convert values out of ASCII file formats that make use of this notation.

void oapc_util_dbl_to_block(double inValue,struct oapc_num_value_block
*outBlock)

This function converts the architecture-dependent representation of a “double” data type inValue to
a platform-independent and portable representation that is stored within a structure where outBlock points
to. The resulting outBlock data can be used for transmission over the network or for saving data in a
portable way so that these data can be read on completely different platforms.

double oapc_util_block_to_dbl(struct oapc_num_value_block *inBlock)

Here the opposite is done than within the preceding function: a platform- and architecture-
independent representation of a floating point data type that is stored in inBlock is taken and converted to
the local format of a “double” data type that is returned by this function.

bool oapc_util_create_thread(void *(*start_routine)(void*), void *arg)

This function is deprecated and will be removed in future software versions, please use
oapc_thread_create() instead

int oapc_util_thread_sleep(int msecs)

This function is deprecated and will be removed in future software versions, please use
oapc_thread_sleep() instead

bool oapc_util_thread_set_prio(const unsigned char prio)

This function is deprecated and will be removed in future software versions, please use
oapc_thread_set_prio() instead

bool oapc_util_to_unicode(char* str,wchar_t* out,int outSize)

With this function plain Latin-1 encoded ASCII text can be converted to Unicode. The input text has
to be handed over using parameter str, the converted data are stored in out. The last parameter outSize
specifies the number of wide characters that fit into the output buffer out. The size of a wide character
depends on the system where the library is used at depending on the standard definition of wchar_t.

unsigned int oapc_util_colour2gray(unsigned int colour)

Converts a RGB colour value to its grayscale representation. The colour value has to be given with
parameter colour, the converted grayscale value is returned by this function.

72

double oapc_util_atof(const char value)

This function is a replacement for atof(), comparing to it it converts a character string value into a
floating point independent from a locale. Thus this function can be used for any string value independent
from its formatting. After OpenAPC applications can be distributed over different systems with probably
different locales it is highly recommended to use this function only instead of atof().

void *oapc_util_get_time()

This is a platform independent possibility to get a time information with a resolution better than one
second. The maximum available resolution as well as the contained time depends on the operating system.
Thus these functions can't be used to evaluate the exact date, here the current time of the day can be
extracted or they can be used to evaluate the difference between two time information.
This function returns a time memory area which has to be released either by the comparison function
oapc_util_diff_time() or by oapc_util_release_time().

void oapc_util_release_time(void *time)

This function releases the memory of the parameter time which was allocated by a preceding call of
oapc_util_get_time().

double oapc_util_diff_time(void *time1, void *time2)

Using this function the difference between two time values time1 and a later time value time2 can
be evaluated. The memory areas of these time values are released by this function, no subsequent calls to
oapc_util_release_time() are necessary. The value returned by this function is the difference
between two times in unit second, the maximum accuracy of the returned value is operating system
dependent.

double oapc_util_get_timeofday(void *time)

This function extracts the time of the current day out of the given information in parameter time. The
memory area related to this parameter is not released by this function, here an additional call to
oapc_util_release_time() is required. The current time is returned by this function (in unit seconds
counted from midnight of the current day).

struct oapc_bin_head *oapc_util_alloc_bin_data(unsigned char type,unsigned char
subType,unsigned char compression,int sizeData)

Tries to allocate a binary data structure (including the required head) and to initialise it with default
values. Here type specifies the main structure type using one of the constants OAPC_BIN_TYPE_xxx,
subType the sub structure type specified by one of the constants OAPC_BIN_SUBTYPE_xxx_yyy and
compression specifies the used compression type using one of the constants OAPC_COMPRESS_xxx. The
last parameter sizeData has to be used to specify the size of the payload data (excluding the length of the
binary head). In case of success this function returns a fully initialised structure oapc_bin_head that is
followed by a memory area large enough to hold sizeData bytes of payload data. In case of an error NULL
is returned.
Binary structures that have been allocated using this function need to be released by calling
oapc_util_release_bin_data().

void oapc_util_release_bin_data(struct oapc_bin_head *bin)

This function has to be used to release binary memory areas that have been allocated using
oapc_util_alloc_bin_data().

73

int oapc_util_check_maskbit(struct oapc_bin_head *bin,int x,int y)

This function checks if a mask bit within a black/white mask bitmap is set or not and returns 1 whe
nthe mask bit is set and 0 otherwise. This function expects a binary structure bin of type
OAPC_BIN_TYPE_IMAGE, subtype OAPC_BIN_SUBTYPE_IMAGE_BW1 to be used for checking the mask bit
at coordinates specified by x and y. In case no binary struture is handed over, a binary structure of wrong
type/subtype is given, in case the requested coordinates are not located within the bitmap specified by the
binary structure or in case of an other error 1 is returned by this function.

6.3.1 Ring Buffer Utility Functions of liboapc

There exists a subset of utility-functions for liboapc that can be used to implement a fast ring buffer. Such a
ring buffer can be used to implement FIFO-style data handling where stored values are put into a queue and
can be pulled out of that queue in the order as they have been put into it.

This ring buffer is not thread safe, so in case two or more threads are accessing its functions they have to be
synchronised via a mutex and the functions oapc_thread_mutex_lock() and
oapc_thread_mutex_unlock().

The ring buffer functions can be identified via its name, they all start with oapc_util_rb_. To manage a ring
buffer a special data storage variable of type struct oapc_util_rb_data has to be used, a pointer to
this variable has to be handed over at every function call. This variable will be used by the ring buffer
functions to store important buffer management information, thus it mustn't be changed in any way.

int oapc_util_rb_alloc(struct oapc_util_rb_data *buffer,int elements)

Allocates memory for a new ring buffer and initialises the buffer management information in variable
buffer. The contents of this variable that have to be handed over as pointer don't need to be initialised
before, this is done by this function completely. The second parameter elements specifies the capacity of
the ring buffer.

This function has to be called as very first. All the other ring buffer functions can be used only in case it
returns OAPC_OK.

int oapc_util_rb_release(struct oapc_util_rb_data *buffer)

This function has to be called whenever a ring buffer is no longer needed, it releases all memory that
is required for handling the ring buffer. In case this function is called with a buffer value that already has
been released, nothing will happen, the function just returns with OAPC_OK.

PLEASE NOTE: this function only releases the ring buffer management data, it does not influence any data
that may still be stored within the ring buffer! So it is recommended to empty the whole ring buffer and to
release the associated memory areas before calling this function.

int oapc_util_rb_push(struct oapc_util_rb_data *buffer,void *data)

Appends a new pointer to a memory area to the ring buffer. The variable handed over via buffer
has to be allocated before by calling oapc_util_rb_alloc(), elsewhere the results of this function may
be undefined. A pointer to the memory area that has to be added to the buffer needs to be handed over via
parameter data, it is stored within the ring buffer and can be fetched later via a call to
oapc_util_rb_front() as soon as it has reached the beginning of the queue.

This function returns OAPC_OK in case the new data could be added to the buffer successfully or
OAPC_ERROR_RESOURCE in case the buffer is full and no more space is available in ring buffer.

void *oapc_util_rb_front(struct oapc_util_rb_data *buffer)

74

This function returns a pointer to a memory area that is positioned at the front of the ring buffer and
is available next. This function just returns the next pointer, it does not remove it from the ring buffer. To do
that and to get access to the next available element on next call the function oapc_util_rb_pop() has to
be used separately. In case the buffer is empty and no more data are available the function returns NULL.

int oapc_util_rb_pop(struct oapc_util_rb_data *buffer)

Removes the current data from the ring buffer that is specified via parameter buffer. This function
typically is called after fetching the data via oapc_util_rb_front() so that the next data out of the ring
buffer can be accessed afterwards. This function returns OAPC_OK in case the current value could be
removed from the buffer successfully or OAPC_ERROR_RESOURCE in case the ring buffer is empty and no
more data are available for removal.

bool oapc_util_rb_empty(struct oapc_util_rb_data *buffer)

Using this function it can be checked if the ring buffer specified by parameter buffer is already
empty or not. It returns true in case no data are stored within the buffer and false otherwise.

bool oapc_util_rb_full(struct oapc_util_rb_data *buffer)

Using this function it can be checked if the ring buffer specified by parameter buffer is full or if
there is any space left to add new data. It returns true in case it is full and no more data can be stored
within the buffer and false in case there is some space left for data.

6.4 Thread-Functions of liboapc

The following functions offer a threading-related functionality. This includes management of threads as well
as some thread-related functionalities like delays, thread-switches, signalling, mutual exclusions and others
more.
Most of these functions exist in very similar implementations on several platforms but the liboapc-functions
offer a platform-independent, standardised interface. So when this library is used instead of the platform-
dependent ones, porting of liboapc-based applications to an other operating system becomes much easier.

void *oapc_thread_create(void *(*start_routine)(void*), void *arg)

This function creates a new thread. Here the parameter start_routine points to a function of type
“void *fct(void *arg)” that is created as new thread. The second parameter arg can be NULL or it
can point to data that are handed over to the new thread as argument.
This function returns a handle to the newly created thread or NULL in case of an error.

bool oapc_thread_set_prio(void *handle,const unsigned char prio)

Changes the priority of the thread specified by parameter handle. The second parameter prio
specifies the new priority of the thread in range -2..2 where -2 is the lowest priority possible, 0 is the default
priority of a thread as it would be set after thread creation and 2 is the maximum priority which has the
potential to slow down or stall a system completely. The function returns true in case the new priority could
be set successfully, false otherwise.

void oapc_thread_release(void *handle)

Releases all resources that are assigned to the thread specified by parameter handle. This function
does not stop or terminate a thread, is must be called only after a thread has terminated.

75

int oapc_thread_sleep(int msecs)

This function makes the current thread sleep for the given number of msecs and typically causes a
thread switch so that other threads that are not sleeping at the moment become active. The value for msecs
has to be a positive number. Its accuracy and minimum resolution is highly platform dependent. Typically a
value of 0 causes only a thread switch, values greater than 0 may be used for real delays that can be only as
exact as the underlying platform is able to handle them.

void *oapc_thread_mutex_create(void)

This function creates a new mutual exclusion instance that can be used together with the following
mutex functions.
It returns a handle to the newly created mutex object or NULL in case of an error.

void oapc_thread_mutex_lock(void* handle)

Using this function the entry point of a section can be marked. The function returns only in case it
has exclusive access to the following code. Means when an other thread has entered that section this
function blocks until the other thread makrs this section as left by calling oapc_thread_mutex_unlock().
The parameter expects a handle to a mutex object that was created with a call to
oapc_thread_mutex_create() before.

void oapc_thread_mutex_unlock(void* handle)

Using this function the exit point of a code section can be marked. This function has to be called
exactly once after oapc_thread_mutex_lock() has been used. It releases the lock to the marked section
so that other threads can enter it via the call of oapc_thread_mutex_lock() exclusively.

The parameter expects a handle to a mutex object that was created with a call to
oapc_thread_mutex_create() before.

void oapc_thread_mutex_releases(void* handle)

Releases all resources assigned to the mutex that is specified by parameter handle. After calling
this function no more calls to oapc_thread_mutex_lock() or oapc_thread_mutex_unlock() are
allowed.

bool oapc_thread_timer_start(void (*start_routine)(void*,int),int time,void
*data,int timerID)

This function starts a timer and executes a given function as soon as the specified time has elapsed.
Here the smallest possible resolution of the timer depends on the underlying operating system.
The parameter start_routine defines the callback function that has to be executed after the given time
in milliseconds has elapsed. When the callback routine is executed the specified data are handed over to it
together with the timerID that can be used to identify the timer.

void *oapc_thread_signal_create()

This function creates a new handle that can be used for signalling between threads: such a handle
can be used to send one signal to an other thread that stops execution until a signal arrives. This is an other
inter-thread synchronisation mechanism but different to mutexes its up to the application itself to decide
which thread has to wait how long. The signal handler is returned by this function, in case of an error NULL is
given back. The returned handler has to be released after it is no longer needed.

int oapc_thread_signal_send(void *handle)

A call to this function corresponds to oapc_thread_signal_wait(): when this function is called

76

a thread that waits for a signal continues its operation. Both, the signal and the wait function have to use the
same signal handler handle. In case the operation could be executed successfully OAPC_OK is returned or
an error code otherwise.

int oapc_thread_signal_wait(void *handle,int msecs)

When this function is called execution of the current thread is stopped until a signal is sent by a call
to function oapc_thread_signal_send(). Once a signal is received from an other thread that uses the
same signal handler handle, the current thread continues operation. Alternatively a time-out can be
specified using parameter msecs: when the time specified there has elapsed the function returns also in
case no signal was received. To let the function wait for a signal infinitely and without any time-out a value of
-1 has to be given here.
Please note: dependent on the operating system this function may return when a signal is already pending.
Means when a signal is sent to the given handle before the wait function is called, this pending signal is used
to let the wait function return immediately.

void oapc_thread_signal_release(void *handle)

After a signal handler handle is no longer used this function has to be called to release all
signalling-related resources. When this function was called, the signal handler is no longer valid and can't be
used any longer.

6.5 Dynamic Library Functions of liboapc

This section describes a bunch of functions that are necessary for managing plug-ins and shared libraries
that are loaded during runtime. They offer platform-independent functions for loading an external library and
fetching the contained functions via their symbol names.

void oapc_dlib_load(const char name)

This function tries to load an external shared library with the given name so that it can be used
together with the following functions. Here the name depends on the platform, it is case-insensitive on
Windows and typically uses the extension “.DLL”, it is case-sensitive on Unix- and Linux-systems and uses
the extension “.so”. The function returns a handle to the opened and loaded library in case it could be loaded
successfully or NULL otherwise.

void *oapc_dlib_get_symbol(void *handle, const char name)

Using this function a pointer to a function within a loaded library can be retrieved for later use. The
first parameter is a handle to the library that was loaded with oapc_dlib_load() before, the second one is
the name of the symbol the function to be loaded belongs to.
This function returns NULL in case no symbol with the given name could be found or a pointer to the related
function otherwise.

void oapc_dlib_release(void *handle)

Here all resources related to the loaded library that is specified by the given parameter handle are
released and the library is unloaded in case no other applications use it. After using this function no more
calls to oapc_dlib_get_symbol() are allowed.

6.6 ControlRoom-Interface-Functions of liboapc

77

The oapc_iface_ functions can be used within external applications to implement and to provide a
standard ControlRoom TCP/IP-based interface easily. Once such a interface is set up this application
receives data from a connected ControlRoom player and can react on these data depending on their
meaning. The whole process of implementing such an interface requires some quite simple function calls
only:

1. set a callback where incoming data are announced at by calling
oapc_iface_set_recv_callback()

2. (optionally) set authentication information using oapc_iface_set_authentication()

3. initialise the interface with oapc_iface_init()

4. jump into the main loop of the application and react on data announced at the callback function

5. remove the interface by calling oapc_iface_exit() before the application is left

The main job is done in step 3, here the callback function becomes active and does the job of the application
by reacting on data that are send from the ControlRoom project that connected to this interface.

Following interface functions are provided by the library:

int oapc_iface_set_recv_callback(lib_oapc_iface_callback oapc_iface_callback)

This function has to be called before the interface is initialized: here a callback function
lib_oapc_iface_callback has to be specified where state information and received data are handed
over during communicating with connected clients.

This function returns OAPC_OK in case the callback function could e registered successfully or an error code
otherwise.

The registered callback function is defined as follows:

typedef void (*lib_oapc_iface_callback)(int type,char *cmd,unsigned char
digi,float num,char *str,struct oapc_bin_head *bin,int socket)

This function is called whenever new data are received from a connected ControlRoom player. It
hands over the following data to the application:

type – specifies the type of call; depending on this type the following parameters contain some data or not:

– OAPC_IFACE_TYPE_STATE_NEW_CONNECTION - a new client has connected to the interface; here
the parameter socket is used to identify this new connection

– OAPC_IFACE_TYPE_STATE_CONNECTION_CLOSED - a client has closed its connection to the
interface

– OAPC_IFACE_TYPE_STATE_CONNECTION_ERROR - an error occurred for a client

– OAPC_IFACE_TYPE_DIGI - digital data have been received together with the assigned command

– OAPC_IFACE_TYPE_NUM - numeric data have been received together with the assigned command

– OAPC_IFACE_TYPE_CHAR - character data have been received together with the assigned
command

– OAPC_IFACE_TYPE_BIN - binary data have been received together with the assigned command

cmd - contains the command that is assigned to received data

digi - received digital data

num - received numeric data

char - received character data

bin - received binary data

78

socket - the socket where these data have been received at; this value can be used together with
oapc_iface_send_-functions to give a direct reply to this connection or to send data to all connected
ControlRoom applications except this one. Whenever a value >0 is handed over here valid socket data are
given that should be stored until a connection leaves with
OAPC_IFACE_TYPE_STATE_CONNECTION_CLOSED or OAPC_IFACE_TYPE_STATE_CONNECTION_ERROR
in order to send data to this connection asynchronously.

int oapc_iface_set_authentication(char *uname,char *pwd)

The ControlRoom interface implementation may use a user authentication by using a login name
and a password. When these authentication parameters are set within the ControlRoom project, the same
data have to be specified for the application that implements the interface. That can be done using this
function, it accepts a user name uname and a password pwd as parameter. When a connection is
established to this interface afterwards that does not use the correct user name and password, it is rejected
automatically.

This function returns OAPC_OK in case the authentication data could be set successfully or an error code
otherwise.

int oapc_iface_init(const char *host,unsigned short port)

This function initialises the ControlRoom interface and starts the related server thread which is used
by incoming connections for communication. The given host name host and the port number port specify
where this server has to be accessible at for these incoming connections. When host is set to NULL and port
to 0, the default data 0.0.0.0:1810 are used.

This function returns OAPC_OK in case the interface could be initialised successfully or an error code
otherwise.

int oapc_iface_send_digi(const char *cmd,unsigned char digi,int socket)

While incoming data are announced at the registered callback this function can be used to send
digital data to a connected ControlRoom application. Here cmd is the command that is assigned to the data,
digi contains the digital value that has to be sent and socket is the identifier of the connection where the
data have to be sent to.

This function returns OAPC_OK in case transmission of the data could be done successfully or an error code
otherwise.

int oapc_iface_send_num(const char *cmd,float num,int socket)

While incoming data are announced at the previously registered callback, this function can be used
to send numeric data to a connected ControlRoom application. Here cmd is the command that is assigned to
the data, num contains the numeric value that has to be sent and socket is the identifier of the connection
where the data have to be sent to.

This function returns OAPC_OK in case transmission of the data could be done successfully or an error code
otherwise.

int oapc_iface_send_char(const char *cmd,char *str,int socket)

While incoming data are announced at the registered callback, this function can be used to send text
data to a connected ControlRoom application. Here cmd is the command that is assigned to the data, str
contains the text value that has to be sent and socket is the identifier of the connection where the data
have to be sent to.

This function returns OAPC_OK in case transmission of the data could be done successfully or an error code
otherwise.

79

int oapc_iface_send_bin(const char *cmd,struct oapc_bin_head *bin,int socket)

While incoming data are announced at the registered callback, this function can be used to send a
binary data block to a connected ControlRoom application. Here cmd is the command that is assigned to the
data, bin contains the binary data that have to be sent and socket is the identifier of the connection where
the data have to be sent to.

This function returns OAPC_OK in case transmission of the data could be done successfully or an error code
otherwise.

int oapc_iface_exit()

Closes all connections to incoming ControlRoom applications, de-initialises the interface and shuts it
down completely. This function returns OAPC_OK in case everything could be closed successfully or an
error code otherwise.

6.7 Interlock Server Access Functions of liboapc

The OpenIServer (Open Interlock Server) is an application that works in background and stores state
information of all elements used within a currently running ControlRoom project. So depending on the
structure of the project the current state of it can be restored automatically as long as the OpenIServer is not
stopped. Beside of that it is possible to implement interlocks between user input elements and real hardware
and to execute automated sequences by using and modifying these sequences.

The liboapc itself contains the functionality for accessing the Interlock Server out of own applications in order
to implement such functionalities. The library contains some functions that don't have to be used externally
(and are not described here) and other functions that have to be used by external applications and therefore
are specified fully. The functions described below handle connecting to the server, transferring data to it,
receiving data from it and perform some decoding/service tasks.

The handled payload data always consist of a member "ios" that describes how much and which data
blocks will follow, here for IO types OAPC_DIGI_IOx a struct oapc_digi_value_block is used, for IO
types OAPC_NUM_IOx a struct oapc_num_value_block will follow, for IO types OAPC_CHAR_IOx a
struct oapc_char_value_block will follow and for IO types OAPC_BIN_IOx a struct
oapc_bin_head is used.

If the payload value "ios" is equal to NULL no data are attached. The second common parameter "cmd"
uses the OAPC_CMD_xxx constants to inform what has to be done exactly. The values itself are handled
using an array of void-pointers. Depending on the "ios"-flags these array members point to data structures
of type oapc_xxx_value_block (where "xxx" stands for the data type). Here oapc_num_value_block
is a bit special, it is a platform-independent representation of a number. Such a structure can be filled using
oapc_util_dbl_to_block() and it can be converted back to a double value by using function
oapc_util_block_to_dbl().

The memory areas the void-array points to are always released by the instance that creates them. So within
a callback function the memory areas are valid but they are released immediately after it is left. The same
has to be done when an application sends new data using function oapc_ispace_set_data(): liboapc
will not release these data after sending them to the server, this has to be done by the instance that calls this
function.

The complete procedure of using the state data is quite simple and consists of the following steps only:

1. retrieve new connection ressources by calling oapc_ispace_get_instance()

2. install the callback function using oapc_set_recv_callback()

3. connect to the Interlock Server by calling oapc_ispace_connect()

4. communicate with the server/use the state data

5. close the connection to the server with oapc_ispace_disconnect() before exiting the

80

application

Within step 4) data can be set or changed within the data space using function
oapc_ispace_set_data(). This operation causes the server to immediately inform all other connected
clients (including the running OpenPlayer or OpenDebugger) about the modification so that they can react on
it in case they are somehow responsible to the modified data node. So if e.g. an application connected to the
Interlock Server changes the numeric value of a data field that belongs to a number input field within the HMI
of the ControlRoom project, this new numeric value will be displayed immediately within that input field.

Beside of that function an application may also call oapc_ispace_request_all_data() to retrieve the
list of all data managed within the server or oapc_ispace_request_data() to request one specific data
node

Following functions are provided by the library:

void *oapc_ispace_get_instance()

This function has to be called as very first to obtain instance resources for a new interlock space
connection. This resource is required for all following function calls and has to be handed over as value for
the parameter "handle". When no more resources are available, NULL is returned instead of a valid pointer,
in this case no additional connections to the interlock server are possible. This function is not thread safe!

int oapc_set_recv_callback(void *handle,lib_oapc_ispace_callback
oapc_ispace_callback)

This function has to be called before a connection to an Interlock Server is established, here a
callback function oapc_ispace_callback has to be set that receives data sent from the server to the
application.
ATTENTION: This function has to be called exactly once before connecting to the server, it is not possible to
change the callback function later!
This function returns OAPC_OK when the callback function could be installed successfully or an error code
otherwise. The callback function itself is defined as:

typedef void (*lib_oapc_ispace_callback)(void *handle,char *nodeName,unsigned
int cmd,unsigned int ios,void *values[MAX_NUM_IOS])

When the callback function could be registered successfully and a connection to the Interlock Server was
established, this callback function is called every time something is received from the server. Such
receptions can occur for different reasons:

– a client changed something within the interlock data space, here the new values are transmitted to
all other clients that may be interested in these changed data

– the own application requested a specific data block by calling oapc_ispace_request_data(), here the
callback function is called either with the resulting data with no data and an error code when this
specific block doesn't exists

– the own application requested a complete update by calling oapc_ispace_request_all_data(), in this
case the callback function is called for every data block that exists within the Interlock Server

When this function is called from within the interface following data may be handed over to the application
that holds this callback:

handle – a communication resource handle as returned by oapc_ispace_get_handle() originally, it
identifies the connection where the new data arrive at; this parameter would give the possibility to check
where data are received at when more interlock server connections are used from within the same
application, nevertheless it is highly recommended to use a separate callback for every used connection

nodeName – the internal name of the data block the following data belong to; this name consists of a
direction information "/in/" or "/out/" for input or output data and the name of the related node as set by an
application that accesses the Interlock Server or as specified for the element within the currently running

81

ControlRoom project

cmd – specifies why the function is called, using which command the data have been sent or which reason
for an error occured. Here following constants are valid:

– OAPC_CMD_SET_VALUE – a new (requested) data block was received

– OAPC_CMDERR_DOESNT_EXISTS is given when a requested data block could not be found; in this
case the parameter ios and all the related values are set to 0

ios – the IO flags that specify which fields of the following values-array contain which kind of data; here a
OR-concatenated list of OAPC_xxx_IO-flags is given that specifies which of the following value array indices
contain which kind of data

values – the data itself; this is an array of pointer to data blocks containing the data types specified by the
parameter ios, when no IO exist for a field, the related index is NULL

int oapc_ispace_connect(void *handle,const char *host,unsigned short port,struct
oapc_ispace_auth *auth)

This function tries to connect to an existing Interlock Server using the host name host and the port
number port. In case one or both of these parameters are set to 0, the default values are used. This
function returns OAPC_OK when the connection could be established successfully, OAPC_ERROR_RESOURCE
in case no callback function was defined to receive answers from the server or OAPC_ERROR_CONNECTION
when the server is not accessible.

int oapc_ispace_request_data(void *handle,const char*nodeName,struct
oapc_ispace_auth *auth)

This function explicitly requests a specific data block from the server. When the requested data
exists, the result will be received liboapc-internal and forwarded to the callback function. It is not necessary
to call this function repeatedly in order to get informed about state changes within the Interlock Server, this is
done automatically as soon as a client has connected to the server and as soon as a value within that server
changes.
This function requires the unique nodeName of the requested data block, the same name will be provided
within the callback function as soon as the related data are received. When the requested data block could
not be found, a specific answer is sent to the callback function, in this case no data are provided but the
callbacks "cmd" parameter is set to OAPC_CMDERR_DOESNT_EXISTS.
The additional parameter auth is reserved for future use and has to be set to NULL at the moment.
This function returns OAPC_OK when the request could be transmitted successfully or an error code
otherwise. In case of an error the socket connection is closed by this function and has to be re-established
by the main application in order to continue communication with the Interlock Server.

int oapc_ispace_request_all_data(void *handle,struct oapc_ispace_auth *auth)

This function requests all available data blocks from the server. The result will be received internally
and forwarded to the callback. The data blocks itself can be identified by the node name that is handed over
to the callback function.
PLEASE NOTE: calling this function may result in a longer operation where a bigger amount of data is
transferred to the client, that depends on the number of data nodes that are currently handled by the server.
The additional parameter auth is reserved for future use and has to be set to NULL at the moment.

int oapc_ispace_set_data(void *handle,const char *nodeName,unsigned int ios,void
*values[MAX_NUM_IOS],struct oapc_ispace_auth *auth)

This function has to be called by a client application whenever modified data have to be transmitted
to the server. When a data block with the given nodeName already exists, not all data need to be transmitted
but only the modified ones. In such a case the server will change only these fields that are sent and will leave
the other ones untouched. That means that no data can be deleted from the server. The required parameters
and their meaning are very similar to the ones of the callback function:

82

nodeName - the unique name of the data block to be transmitted

ios - a set of OR-concatenated IO-flags that will be sent using the following parameter values, the fields of
this value have to be filled with flags of type OAPC_xxx_IOx and have to correspond with the number,
position and type of data provided in the values array

values - an array of pointers to the data which have to be sent to the server

auth - reserved for future use and has to be set to NULL at the moment

This function returns OAPC_OK when the request could be transmitted successfully or an error code
otherwise. In case of an error the socket connection is closed by this function and has to be re-established
by the main application. When an error OAPC_ERROR_NO_DATA_AVAILABLE is returned the parameters
provided to this function have been invalid: in this case at least one IO was specified within the parameter
"ios" where no data have been set to the corresponding "values" index.

int oapc_ispace_disconnect(void *handle)

This function closes the connection to the Interlock Server that is identified by the parameter handle
and releases all related resources including the callback function and the handle resource. So before the
next connection attempt a new handle has to be obtained by calling oapc_ispace_get_instance() and
the callback has to be installed again.

83

7 Shared Library liboapcwx

The ControlRoom applications use one general, shared library “liboapcwx”. This library contains several
common functionalities that are ported for all platforms the ControlRoom software is available for. Comparing
to “liboapc” here these functions are included that somehow depend on the wxWidgets toolkit. They have
been put into an own library to keep target system installations as small as possible: wherever plug-ins or
other components of the software package are used that do not make use of wxWidgets-functions it is not
necessary to install this package just because liboapc needs that dependency. So this library is used by the
main application and by only very few and very specific plug-ins. Following the functions of this library are
described so that it can be used by other plug-ins and completely other applications too.

The sources of the complete library liboapcwx are contained within the SDK.

All the functions described below are contained within the general header file “liboapc.h” that is provided
within the SDK too. Beside of that header file also “oapc_libio.h” might be necessary. This header file is
responsible for all plug-in related definitions but also contains some data that are used by “liboapc.h”.

7.1 Canvas-Functions of liboapcwx

This function group is useful for HMI plug-ins, they can be used to access special properties of the canvas
object that is handed over from the main application to the plug-in.

bool oapc_canvas_get_readonly(wxPanel *canvas)

This function can be used to retrieve the read-only state of the canvas that is given by the main
application and used by the plug-in to implement the own HMI element. The function returns true when the
canvas is set to read-only, it returns false for a read and writeable state.

void oapc_canvas_set_readonly(wxPanel *canvas,bool readonly)

The read-only state of a canvas can be set by this function, the object from the main application has
to be handed over with parameter canvas, the second parameter readonly specifies the state to be set. Is
has to be true when the canvas has to be set to read only, false otherwise.

bool oapc_canvas_get_enabled(wxPanel *canvas)

This function can be used to check if the canvas that is given by the main application and used by
the plug-in to implement the own HMI element is enabled or not. The function returns true when the canvas
is set to read-only, it returns false for a read and writeable state. Please Note: for compatibility reasons the
function wxPanel::IsEnabled() has not to be used!

void oapc_canvas_set_enabled(wxPanel *canvas,bool enable)

The enabled state of a canvas can be set by this function, the object from the main application has to
be handed over with parameter canvas, the second parameter enable specify the state to be set. Is has to
be true when the canvas has to be enabled, false otherwise. Please note: for compatibility reasons the
function wxPanel::Enable() has not to be used!

void oapc_canvas_release_data(wxPanel *canvas)

This is an internal function, it is not allowed to use it from within a HMI plug-in!

84

7.2 Unicode-Functions of liboapcwx

This set of functions can be used to convert between different string formats including plain ASCII strings
and several Unicode representations. Conversion is always done between a char data type (which may
contain strings with more than 8 bit per character) and the wxString data type of wxWidgets:

void oapc_unicode_charToStringUTF16BE(const char *c,int len,wxString *result)

Converts a UTF-16 string in big-endian byte order to a wxString. The input Unicode string is
handed over in pointer c, len specifies the length of that string. The converted string is returned via pointer
result.

void oapc_unicode_charToStringUTF8(const char *c,int len,wxString *result)

Converts a UTF-8 string to a wxString. The input Unicode string is handed over in pointer c, len
specifies the length of that string. The converted string is returned via pointer result.

void oapc_unicode_charToStringASCII(const char *c,int len,wxString *result)

Converts a plain 8 bit ASCII-string of locally used codepage to a wxString. The input ASCII string
is handed over in pointer c, len specifies the length of that string. The converted string is returned via
pointer result.

void oapc_unicode_stringToCharUTF16BE(wxString s,char *c,int len)

Converts the wxString contained in s into a UTF-16 string in big-endian byteorder. The result is
written into the memory where c points to while the maximum length of len bytes is not exceeded.

void oapc_unicode_stringToCharUTF8(wxString s,char *c,int len)

Converts the wxString contained in s into UTF-8 format. The result is written into the memory
where c points to while the maximum length of len bytes is not exceeded.

void oapc_unicode_stringToCharASCII(wxString s,char *c,int len)

Converts the wxString contained in s into plain 8 bit ASCII-format. For this conversion the local
codepage is used. The result is written into the memory where c points to while the maximum length of len
bytes is not exceeded.

void oapc_unicode_utf16BEToASCII(char *utf,int len)

This function performs an in-place conversion from a UTF-16 formatted string in big-endian byte-
order into a plain 8 bit ASCII-string. For conversion the local codepage is used. The input string is expected
in memory area where utf points to, parameter len specifies the length of that memory area (in bytes).
After conversion the result can be found in utf too using a zero-terminated ASCII-string which will have
exactly halve size than specified by len.

7.3 Path-Functions of liboapcwx

This function group handles all kinds of file and path name related functionalities and therefore acts on level
of disk file system pathes and names.

85

void oapc_path_split(wxString *path,wxString *dir,wxString *file,wxString
extension)

This function can be used to split a full path to its directory part and its file name. Optionally the file
name can be checked for an extension and – if it does not own it – the extension is added to it. The full path
is handed over via parameter path. When the extracted file has to be checked, parameter extension
needs to be a non-empty string. If it does not own such an extension it is added automatically. The –
optionally – extended file and the directory of it are returned via parameters file and dir.

86

8 Shared Library libsmartfactory
Some of the software components of the OpenAPC package make use of a library which encapsulates a
bunch of Smart Factory / Industry 4.0 related functions.

The sources of the complete library libsmartfactory are contained within the SDK.

All the functions described below are contained within the general header file “libsmartfactory.h” that is
provided by the SDK. This library depends on liboapc and liboapcwx, so both must be available in an
environment where libsmartfactory shall be used. The error codes used by libsmartfactory are the ones
defined in liboapc.h, both make use of the same error handling return codes.

The external library libsmartfactory is divided into different functional sections that are described below.

8.1 Hermes related functions of libsmartfactory
The shared library libsmartfactory implements the industry communication protocol The Hermes Standard as
described by the Hermes consortium: https://the-hermes-standard.info.

The related functionalities can be found as source within the SDK in file “libsmartfactoryHermesFcts.cpp” and
contain several functionalities that are related to connected machines within an automated production line as
defined by the Hermes consortium (for details, the exact specification, usage and handling of this protocol
please refer the webpage mentioned above). A typical Hermes session consists of the following sequence:

1. sf_hermes_create_instance() - create a new Hermes communication instance and allocate all
required resources

2. define callback functions via sf_hermes_set_prev_state_callback() and
sf_hermes_set_next_state_callback() to let the own application be notified whenever the
previous or the next machine sends some information the own one has to react on

3. sf_hermes_open_connections() - open TCP/IP interfaces which allow the current instance to
communicate with the previous and the next machine in the production line

4. repeatedly: communicate with the next machine via commands sf_hermes_set_next_...()
functions and with the previous machine via sf_hermes_set_prev_...() functions according to
the own machines production state; in case the own machine is located at the beginning of a
production line and there is no previous machine providing any incoming data for every new product
sf_hermes_wx_set_product_identifier() has to be called

5. sf_hermes_delete_instance() - at end of overall operation (e.g. on shutdown of own machine)
close all connections and release all resources

The logic and states of the Hermes protocol have to be implemented in point 4), for details please refer to the
original specification of The Hermes Standard.

Some of the functions provided by this library exists in two variants. When they start with sf_hermes_wx_
they expect some wxWidgets-specific data types (typically a wxString). When their name starts with
sf_hermes_ but without the wx_-part, all parameters are plain C or C++ data types which do not depend on
any other third party frameworks.

Following Hermes-related functions are provided by this library:

void *sf_hermes_wx_create_instance(const wxString *machineIdentifier,
const enum hermes_level level)

void *sf_hermes_create_instance(const char *machineIdentifier,
const enum hermes_level level)

Creates a new Hermes communication instance, the returned instance resource has to be used with

87

https://www.the-hermes-standard.info/

all following sf_hermes_-function calls and needs to be released by calling
sf_hermes_delete_instance() at the end. The parameter machineIdentifier has to contain a
unique string which identifies the own machine. Via level the Hermes compatibility level has to be
specified, here eHERMES_1_0 is the minimum which is supported by all interfaces. For a detailed description
which compatibility levels contain which functionalities please refer to the official Hermes specification.

When the returned value is NULL, an error occurred and no new communication instance could be created.

int sf_hermes_delete_instance(void* instance)

Removes an existing Hermes instance, closes all related connections and releases all related
resources; after this functions has been called the instance handle is invalid and can't be used for any further
calls to sf_hermes_-functions. Here parameter instance is the instance resource which has to be
released.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_open_connections(void *instance,
const unsigned short prevMachinePort, const char* prevMachineIP,
const unsigned short nextMachinePort,
const char remoteConfigEnabled)

Open new Hermes connections according to the given parameters, this includes both, a previous
and a next machine (if available). Here instance is a pointer to the resources of the current communication
instance, prevMachinePort is the port number for the client socket connection to the previous machine
and prevMachineIP an IP in style xxx.xxx.xxx.xxx for the client socket connection to the previous machine.
nextMachinePort is the port number of the server socket the next machine has to connect with, here the
IP is always 0.0.0.0, means all incoming connections are accepted. When parameter
remoteConfigEnabled is set to 1, the function to change the local configuration is enabled: the related
server socket for incoming connection is created and modifications of the local Hermes parameters are
accepted.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_wx_set_machine_identifier(void* instance,
const wxString *machineIdentifier)

Set an identifier for the local machine which is used in several data structures to uniquely specify this
local machine. Here instance is a pointer to the resources of the current communication instance,
machineIdentifier is the unique identification string for the own machine.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_wx_set_product_identifier(void* instance,
const wxString *productIdentifier)

Set a new product identifier, this value is used only in case no previous machine exists which
already provides product identification data in the provided working piece (aka “board”) structure. When the
own machine has a previous one, all values set here are ignored and the product identification data provided
by the previous machine are used for all further operations. Here instance is a pointer to the resources of
the current communication instance, productIdentifier is the unique identification string for the current
working piece which has to be set newly whenever the product changes.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

88

int sf_hermes_set_prev_state_callback(void* instance,
const hermes_prev_state_callback fct, void *data)

Specify a callback function which is used whenever the state of the previous machine changes. Here
instance is a pointer to the resources of the current communication instance, fct is a pointer to the
callback function and data is a pointer to some custom data which are handed over to the callback function
whenever it is called. The callback function itself is defined as follows:

typedef void(*hermes_prev_state_callback)(const enum hermes_prev_state newState,
const bool error, const void* custData)

• newState – is the new state of the previous machine and defined in enum hermes_prev_state

• error – specifies if the previous machine signalled an error with the current state

• custData – are the custom data as handed over by parameter data of the callback initialisation
function

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_next_state_callback(void* instance,
const hermes_next_state_callback fct, void *data)

Specify a callback function which is used whenever the state of the next machine changes. Here
instance is a pointer to the resources of the current communication instance, fct is a pointer to the
callback function and data is a pointer to some custom data which are handed over to the callback function
whenever it is called. The callback function itself is defined as follows:

typedef void(*hermes_next_state_callback)(const enum hermes_next_state newState,
const bool error, const void* custData)

• newState – is the new state of the next machine and defined in enum hermes_next_state

• error – specifies if the next machine signalled an error with the current state

• custData – are the custom data as handed over by parameter data of the callback initialisation
function

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_wx_set_notification_callback(void* instance,
const hermes_wx_notification_callback fct, void *data)

Specify a callback function which is used whenever a notification arrives at one of the possible
connections (previous machine, next machine or configuration socket). Here instance is a pointer to the
resources of the current communication instance, fct is a pointer to the callback function and data is a
pointer to some custom data which are handed over to the callback function whenever it is called. The
callback function itself is defined as follows:

typedef void(*hermes_wx_notification_callback)(const long notificationCode,
const long severity, const wxString *description, const wxString *src, const
void* custData)

• notificationCode – the type-code of the notification according to the Hermes specification

• severity – the severity of the notification according to the Hermes specification

• description – the notification text as submitted by one of the remote connections

• src – a string identifying the source of the notification

89

• custData – are the custom data as handed over by parameter data of the callback initialisation
function

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_log_callback(void* instance,
const hermes_log_callback fct, void *data)

Specify a callback function which is used whenever an event happens which is interesting for logging
purposes. Here instance is a pointer to the resources of the current communication instance, fct is a
pointer to the callback function and data is a pointer to some custom data which are handed over to the
callback function whenever it is called. The callback function itself is defined as follows:

typedef void(*hermes_log_callback)(const char *logTxt, const void* custData)

• togTxt – the logging text as generated by the library and which can be used in own logs

• custData – are the custom data as handed over by parameter data of the callback initialisation
function

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

enum hermes_prev_state sf_hermes_get_prev_state(void* instance)

Retrieve the current state of the previous machine. Here instance is a pointer to the resources of
the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

enum hermes_next_state sf_hermes_get_next_state(void* instance)

Retrieve the current state of the next machine. Here instance is a pointer to the resources of the
current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_next_BoardAvailable(void* instance)

Signal the next machine a working piece (aka “board”) is available. Here instance is a pointer to
the resources of the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_next_RevokeBoardAvailable(void* instance)

Signal the next machine a working piece (aka “board”) is no longer available. Here instance is a
pointer to the resources of the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_next_TransportFinished(void* instance)

90

Signal the next machine a transport was finished. Here instance is a pointer to the resources of
the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_prev_StartTransport(void* instance)

Signal the previous machine to start transport. Here instance is a pointer to the resources of the
current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_prev_StopTransport(void* instance)

Signal the previous machine to stop the transport. Here instance is a pointer to the resources of
the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_prev_MachineReady(void* instance)

Signal the previous machine that the local machine is ready to accept a working piece (aka “board”).
Here instance is a pointer to the resources of the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_set_prev_RevokeMachineReady(void* instance)

Signal the previous machine that the local machine is no longer ready to accept a working piece (aka
“board”). Here instance is a pointer to the resources of the current communication instance.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_hermes_wx_get_curr_board_info(void* instance, wxString *BoardId,
wxString *ProductTypeId)

Get information from the working piece (aka “board” according to the Hermes naming conventions)
which currently has arrived; this function has to be called after
sf_hermes_set_prev_StopTransport(), elsewhere the returned data are undefined.

In parameter BoardId a unique identifier of the current working piece is returned, ProductTypeId
uniquely identifies the product which is currently processed by the machine. Both data are provided by the
previous machine, are transferred to the next machine on further processing and can be retrieved by calling
this function.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

8.2 Smart Interface related functions of libsmartfactory
The shared library libsmartfactory also provides a generic information interface which provides production-
related data. These data can be used by external applications to check the current production state, to react
on errors which occur on the machine, to implement extended traceability-related functionalities and much

91

more. The provided data are given in XML format as described in manual from
https://openapc.com/download/manual.pdf in section “Smart Interface”.

The related functionalities can be found as source within the SDK in file “libsmartfactoryInterfaceFcts.cpp”. A
typical usage scenario of the Smart Interface functions looks like this:

1. sf_if_create_instance() - create a new Smart Interface communication instance and allocate
all required resources

2. sf_if_open_connections() - open a TCP/IP socket where external applications can connect
with in order to receive data

3. repeatedly: provide production and state information by calling the different sf_if_set_...() and
sf_if_wx_set_...() functions dependent on current production state and dependent on data available
from the machine

4. sf_if_delete_instance() - at end of overall operation (e.g. on shutdown of own machine)
close all connections and release all resources

Some of the functions provided by this library exists in two variants. When they start with sf_if_wx_ they
expect some wxWidgets-specific data types (typically a wxString). When their name starts with sf_if_ but
without the wx_-part, all parameters are plain C or C++ data types which do not depend on any other third
party frameworks.

Following Smart Interface related functions are provided by this library:

void *sf_if_wx_create_instance(const wxString *machineIdentifier)

void *sf_if_create_instance(const char *machineIdentifier)

Creates a new Smart Interface communication instance, the returned instance resource has to be
used with all following sf_if_-function calls and needs to be released by calling
sf_if_delete_instance() at the end. The parameter machineIdentifier has to contain a unique
string which identifies the own machine.

When the returned value is NULL, an error occurred and no new communication instance could be created.

int sf_if_delete_instance(void* instance)

Removes an existing Smart Interface instance, closes all related connections and releases all
related resources; after this functions has been called the instance handle is invalid and can't be used for
any further calls to sf_if_-functions. Here parameter instance is the instance resource which has to be
released.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_open_connections(void* instance)

Open a new Smart Interface server socket at the local machines IP and using port number 11355.
After this function returned with OAPC_OK, external applications are able to connect to the local Smart
Interface and to receive state information.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_machine_identifier(void* instance, const wxString
*machineIdentifier)

92

https://openapc.com/download/manual.pdf

Specify a (new) identifier for the local machine. This identifier should be unique for a production line
or factory and is provided with every information message in order to identify the source of the message.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_product_identifier(void* instance, const wxString
*productIdentifier)

Set a new product identifier which specifies to which product the current production data belong to.
Here instance is a pointer to the resources of the current communication instance, productIdentifier
is the unique identification string for the current working piece which has to be set newly whenever the
product changes.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_error(void* instance, const wxString *errorText);

Set an error text which contains detailed information about an error which occurred and is still
pending. When parameter errorText is a non-empty string, the internal state is set to eERROR and this
error message is provided to all connected clients via the Smart Interface. When errorText is an empty
string, the error state is reset to the previous state which was active before the error occurred.

When this command is called, a corresponding state-message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_set_state(void* instance, const enum SmartState state)

Set a state information which represents the current production state. Here parameter state can
have one of the following values:

• eIDLE – the machine is currently in idle state and not producing anything

• eREADY – the machine is ready for production but waiting for some (external) event to start a new
working/marking cycle

• eMARKING – the machine is currently producing/marking

• eERROR – the machine is in error state and neither producing anything nor able to start a new
production cycle

• ePAUSED – the machine is producing/marking, the current cycle is not yet finished but temporarily
halted by an (external) event, production will continue after this event is released

When this command is called, the corresponding message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_hermes_notification(void* instance, const long
notificationCode, const long severity, const wxString *description, const
wxString *src)

This function is intended to be used together with the Hermes interface: it provides a Hermes
notification via the Smart Interface so that connected clients also get detailed information from Hermes
connections. The parameters given here correspond directly to the ones from a Hermes notification
message, so for details please refer to description of callback hermes_wx_notification_callback
above.

93

When this command is called, the corresponding message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_process_info_data(void* instance, const unsigned int idx, const
double value, const wxString *name, const wxString *unit)

Provides additional process information data. Here up to four different and separated process
parameters can be given via parameter idx which is allowed to be in range 0..3. Parameter value is the
(measured) value of the related process parameter, name specifies the name of it and unit the
measurement unit of this value.

When this command is called, the corresponding message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_append_trace_data(void* instance, const wxString *name, const
wxString *data)

Stores trace-data from current production cycle to send them at the end together with a parts-
message (please refer to function sf_if_set_parts() below for details). Here name is the name of the
element which has to be traced (and which is the same over all production cycles of the same product) and
data are some data related to this element (and which may change on every production cycle depending on
the capabilities of the element which is traced here).

Different to sf_if_wx_set_hermes_trace_info() this function can be called several times for each
production cycle and each call will result in one separate trace-entry in related Smart Interface message.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_wx_set_hermes_trace_info(void* instance, const wxString *boardID,
const wxString *productID)

Stores production-cycle specific trace-data to send them at the end together with a parts-message
(please refer to function sf_if_set_parts() below for details). Here boardID is a unique identifier for
the currently processed working piece and productID an identifier for the product. This is a function which
is related to the Hermes protocol where only an identifier for the whole product is provided but not for
separate elements of this product (please also refer to sf_if_wx_append_trace_data()). So this
function corresponds to the data which can be retrieved by calling function
sf_hermes_wx_get_curr_board_info().

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_set_parts(void* instance, const unsigned int parts)

Specifies the number of parts which already have been produced.

When this command is called, the corresponding message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

int sf_if_set_slices(void* instance, const unsigned int maxSlices, const
unsigned int currSlice)

94

This function can be used to provide additional progress information during a production cycle.
Typically it is used when several slices are processed, here maxSlices specifies the total number of slices
to be produced/marked for the current working piece and currSlice specifies which of these slices is
currently in progress.

When this command is called, the corresponding message is sent to all connected clients.

This function returns OAPC_OK or an OAPC_ERROR_-code in case execution failed

95

Index

0
0xBBGGRR.. 26, 48

1
1810.. 59

A
accuracy... 46
addOAPCIServerListener()... 64
addOAPCListener().. 59
atof()... 72f.

B
BITMAP_FLAG_MARK_BIDIRECTIONAL...40
BITMAP_FLAG_MARK_FROM_LAST_LINE...40
BITMAP_FLAG_MARK_WO_LINE_INCR..40
BoardAvailable.. 90
brate... 69

C
CHAR.. 63
checkbox... 49
close()... 59, 63
CMD/Value-Pair to Digital... 57
colourbutton.. 48
com.oapc.iface.. 62
com.oapc.iserver.. 57
commandReceived()... 58
connectionValid().. 64
ControlRoom Interface.. 56

D
databits... 69
default.. 46ff.
dialogue.. 44f.
DIGI.. 63
Digital to CMD/Value-Pair... 56
dirselect.. 50
disabled... 46ff.
disableon... 46ff.
DLL... 4
dualpanel.. 44f.

E
ECHO_DIGI.. 57
ECHO_NUM... 57
ECHO_STR.. 57
eERROR... 93
eIDLE.. 93
eMARKING... 93
enableon.. 46ff.
ePAUSED... 93
eREADY... 93
Example1.apcp... 57
EXIT.. 57

F

96

face... 49
facename.. 49
ffilter.. 50
fileload.. 49
filesave.. 50
float... 47
FLOW... 8
flow control.. 5
Flow Editor.. 5, 21
flowcontrol... 69
flowimage.. 44f.
fontbutton.. 49

G
general.. 44f.
GetClientSize()... 26

H
handle... 69
HANDLE... 69
Help-Panel.. 51
helppanel.. 44f., 51
Hermes... 87
hermes_log_callback.. 90
hermes_next_state_callback.. 89
hermes_prev_state_callback.. 89
hermes_wx_notification_callback...89, 93
HMI Editor... 21
htonl()... 6
htons()... 6

I
IL... 5
in... 52
Industry 4.0... 87
int.. 69
integer... 46
Interlock Server... 61
Interlock Server Connection.. 61
IOCTRL_ANALOGUE_10_1... 41
IOCTRL_ANALOGUE_10_2... 41
IOCTRL_ANALOGUE_10_3... 41
IOCTRL_ANALOGUE_10_4... 41
IOCTRL_ANALOGUE_10_5... 41
IOCTRL_ANALOGUE_10_6... 41
IOCTRL_ANALOGUE_12_1... 41
IOCTRL_ANALOGUE_12_2... 41
IOCTRL_ANALOGUE_12_3... 41
IOCTRL_ANALOGUE_12_4... 41
IOCTRL_ANALOGUE_16... 41
IOCTRL_ANALOGUE_16_0... 41
IOCTRL_ANALOGUE_16_1... 41
IOCTRL_ANALOGUE_16_2... 41
IOCTRL_ANALOGUE_8_1... 41
IOCTRL_DIGITAL_16_1... 41
IOCTRL_DIGITAL_16_2... 41
IOCTRL_DIGITAL_32... 41
IOCTRL_DIGITAL_8_1... 41
IOCTRL_DIGITAL_8_2... 41
IOCTRL_LASERPORT_8_1... 40f.
IOCTRL_LASERPORT_8_1_BITS...40f.

97

IOCTRL_LASERPORT_8_2... 41
IOCTRL_LASERPORT_8_2_BITS... 41
IOCTRL_SERIAL_DATA.. 41
IOCTRL_SERIAL_DATA_LENGTH..41
IServerData.. 62ff.
IServerData().. 65

J
Java.. 5, 57, 62

L
lib_oapc_iface_callback.. 78
liboapc.. 5, 60, 66f., 87
liboapc.h... 5, 67, 84
liboapcwx.. 84, 87
libsmartfactory.. 87
libsmartfactory.h... 87
LUA... 5

M
MachineReady.. 91
max... 46f.
MAX_NODENAME_LENGTH... 63
MAX_NUM_IOS.. 63
MAX_TEXT_LEN.. 63
min.. 46f.
MSG_NOSIGNAL... 67

N
name... 46
Network Client.. 56f.
ntohl()... 6
ntohs()... 6
NUM... 63

O
OAPC_ACCEPTS_IO_CALLBACK..7, 11, 15
OAPC_ACCEPTS_MOUSECLICKS...23
OAPC_ACCEPTS_MOUSEDRAGS...23
OAPC_ACCEPTS_MOUSEMOVES...23
OAPC_ACCEPTS_PLAIN_CONFIGURATION..7
OAPC_ACCEPTS_SEND_DATA_MODE...8
OAPC_ACCEPTS_SEND_NAMED_DATA_MODE..8
OAPC_ACCEPTS_WRITE_DATA_MODE...8, 10f.
OAPC_BIN_HEAD_CURR_VERSION...30
OAPC_BIN_IO0.. 9
OAPC_BIN_IO7.. 9
OAPC_BIN_IOx.. 14f.
oapc_bin_struct_bitmap.. 39
oapc_bin_struct_ctrl.. 36
oapc_bin_struct_ioctrl... 40
oapc_bin_struct_laserctrl.. 38
oapc_bin_struct_motionctrl... 38
oapc_bin_struct_pos_corr... 42
oapc_bin_struct_scanheadinfo... 41
oapc_bin_struct_vec3d... 36f.
OAPC_BIN_SUBTYPE_IMAGE_BW1..31, 74
OAPC_BIN_SUBTYPE_IMAGE_GREY8...31
OAPC_BIN_SUBTYPE_IMAGE_RGB24..31
OAPC_BIN_SUBTYPE_STRUCT...33ff.
OAPC_BIN_SUBTYPE_STRUCT_AXISSTATE...34

98

OAPC_BIN_SUBTYPE_STRUCT_BITMAP...39
OAPC_BIN_SUBTYPE_STRUCT_BRAKEOUTPUT..34
OAPC_BIN_SUBTYPE_STRUCT_CTRL...31, 36f.
OAPC_BIN_SUBTYPE_STRUCT_CTRLEND..31, 36f.
OAPC_BIN_SUBTYPE_STRUCT_DELAY...32
OAPC_BIN_SUBTYPE_STRUCT_DYNGEOMEND..34
OAPC_BIN_SUBTYPE_STRUCT_DYNGEOMSTART..34, 43
OAPC_BIN_SUBTYPE_STRUCT_FASTOUTPUTCTRL...35
OAPC_BIN_SUBTYPE_STRUCT_HALT...35
OAPC_BIN_SUBTYPE_STRUCT_INPUTCTRL..40
OAPC_BIN_SUBTYPE_STRUCT_LASERCTRL...32, 38
OAPC_BIN_SUBTYPE_STRUCT_MOTIONCTRL...32, 38
OAPC_BIN_SUBTYPE_STRUCT_OUTPUTCTRL..32, 40
OAPC_BIN_SUBTYPE_STRUCT_OUTPUTRESP..32
OAPC_BIN_SUBTYPE_STRUCT_POS_CORR..42
OAPC_BIN_SUBTYPE_STRUCT_POWERDOWN..35
OAPC_BIN_SUBTYPE_STRUCT_RESETTIMER...34
OAPC_BIN_SUBTYPE_STRUCT_SCANHEADINFO..41
OAPC_BIN_SUBTYPE_STRUCT_SCANHEADNFO...33
OAPC_BIN_SUBTYPE_STRUCT_SLICEEND...35
OAPC_BIN_SUBTYPE_STRUCT_SLICESTART..35
OAPC_BIN_SUBTYPE_STRUCT_STARTOUTPUT..34
OAPC_BIN_SUBTYPE_STRUCT_STOPAXIS...35
OAPC_BIN_SUBTYPE_STRUCT_STOPOUTPUT..33f.
OAPC_BIN_SUBTYPE_STRUCT_SYNC...32, 35
OAPC_BIN_SUBTYPE_STRUCT_WAITINPUTCTRL..40
OAPC_BIN_SUBTYPE_STRUCT_WAITTRIG...32
OAPC_BIN_SUBTYPE_TEXT_PLAIN..31
OAPC_BIN_SUBTYPE_ttt_sss... 30
OAPC_BIN_TYPE_CUSTOM... 30
OAPC_BIN_TYPE_IMAGE... 31, 39, 74
OAPC_BIN_TYPE_STRUCT..31ff., 36ff.
OAPC_BIN_TYPE_STRUCT_BITMAP...33
OAPC_BIN_TYPE_STRUCT_ENDMARKREADY..33
OAPC_BIN_TYPE_STRUCT_INPUTCTRL..32
OAPC_BIN_TYPE_STRUCT_JOBEND...33
OAPC_BIN_TYPE_STRUCT_JOBSTART...33
OAPC_BIN_TYPE_STRUCT_MARKREADY...33
OAPC_BIN_TYPE_TEXT... 31
OAPC_BIN_TYPE_ttt... 30
OAPC_BIN_TYPE_ttt_CUSTOM.. 30
OAPC_BIN_UNIT_ttt_uuu.. 30
oapc_canvas_get_enabled()... 84
oapc_canvas_get_readonly().. 84
oapc_canvas_release_data().. 84
oapc_canvas_set_enabled()... 84
oapc_canvas_set_readonly().. 84
OAPC_CHAR_IO0.. 9
OAPC_CHAR_IO7.. 9
OAPC_CHAR_IOx.. 14
OAPC_CMD_GET_VALUE.. 62
OAPC_CMD_SET_VALUE... 82
OAPC_CMDERR_DOESNT_EXISTS..62, 82
OAPC_COMPRESS_NONE... 30
OAPC_CONFIG_IMAGE_CAPTURE_VERSION...18
OAPC_CONFIG_INFO_VERSION... 17
OAPC_CONFIG_LASER_CONTROLLER_VERSION...19
OAPC_CONFIG_MOTION_CONTROLLER_VERSION...18
OAPC_CONFIG_PCONTROL_FLAG_BRIGHTNESS_STYLE..21
OAPC_CONFIG_PCONTROL_FLAG_PRESSURE_STYLE..20
OAPC_CONFIG_PCONTROL_FLAG_TEMPERATURE_STYLE..20

99

OAPC_CONFIG_PCONTROL_VERSION..20
OAPC_CONFIG_TYPE_IMAGECAPTURE..18
OAPC_CONFIG_TYPE_LASERCONTROLLER..18
OAPC_CONFIG_TYPE_MOTIONCONTROLLER..17
OAPC_CONFIG_TYPE_PCONTROL...19
OAPC_CONFIG_TYPE_ZSHIFTER...19
OAPC_CONFIG_ZSHIFTER_VERSION..19
oapc_create_instance().. 10
oapc_create_instance2().. 6, 10, 22
oapc_cycletime... 11
oapc_delete_instance()...6, 10, 12, 22
OAPC_DIGI_IO0.. 9
OAPC_DIGI_IO7.. 9
OAPC_DIGI_IOx... 12f.
OAPC_DIGI_IOy... 65
oapc_dlib_load()... 77
OAPC_ERROR... 29
OAPC_ERROR_AUTHENTICATION...27
OAPC_ERROR_CONNECTION...27, 63
OAPC_ERROR_CONVERSION_ERROR..28
OAPC_ERROR_CREATE_FILE_FAILED..28
OAPC_ERROR_CUSTOM... 16, 29
OAPC_ERROR_DEVICE... 27
OAPC_ERROR_INVALID_INPUT.. 28
OAPC_ERROR_LIBRARY_MISSING..29
OAPC_ERROR_LICENSE... 29
OAPC_ERROR_NO_DATA_AVAILABLE..13ff., 27, 63
OAPC_ERROR_NO_MEMORY... 27
OAPC_ERROR_NO_SUCH_IO... 27
OAPC_ERROR_NOT_SUPPORTED...27
OAPC_ERROR_OPEN_FILE_FAILED...28
OAPC_ERROR_OUT_OF_RANGE...29
OAPC_ERROR_PROTOCOL... 28
OAPC_ERROR_READ_FILE_FAILED...28
OAPC_ERROR_RECV_DATA... 28
OAPC_ERROR_RESOURCE.. 27, 63
OAPC_ERROR_SEND_DATA... 28
OAPC_ERROR_STILL_IN_PROGRESS...28
OAPC_ERROR_STOPPED.. 29
OAPC_ERROR_WRITE_FILE_FAILED...28
OAPC_ERROR_xxx... 71
oapc_exit.. 12
OAPC_EXT_HMI_EXPORTS... 22
OAPC_FLOWCAT_CALC... 8
OAPC_FLOWCAT_CONVERSION..8
OAPC_FLOWCAT_DATA... 8
OAPC_FLOWCAT_FLOW.. 8
OAPC_FLOWCAT_IO.. 8
OAPC_FLOWCAT_LASER.. 9
OAPC_FLOWCAT_LOGIC... 8
OAPC_FLOWCAT_MOTION.. 8
oapc_get_bin_value()... 15
oapc_get_capabilities()... 7, 10, 23
oapc_get_char_value()... 14f.
oapc_get_colours()... 25
oapc_get_config_data... 10
oapc_get_config_info_data().. 16f.
oapc_get_defsize()... 24f.
oapc_get_digi_value().. 12
oapc_get_error_message()... 16, 29
oapc_get_hmi_config_data().. 24, 26

100

oapc_get_input_flags()... 9
oapc_get_name().. 9
oapc_get_no_ui_flags().. 24
oapc_get_num_value()... 13
oapc_get_numminmax()... 25
oapc_get_output_flags()... 9
oapc_get_save_data().. 6, 11, 22
OAPC_HAS_INPUTS.. 7, 9, 12ff.
OAPC_HAS_LOG_TYPE_CHAR... 7
OAPC_HAS_LOG_TYPE_DIGI.. 7
OAPC_HAS_LOG_TYPE_FLOATNUM..7
OAPC_HAS_LOG_TYPE_INTNUM...7
OAPC_HAS_OUTPUTS.. 7, 9, 12ff.
OAPC_HAS_STANDARD_FLOW_CONFIGURATION..23
OAPC_HAS_XML_CONFIGURATION...7, 10
OAPC_HMI_NO_POS.. 24
OAPC_HMI_NO_SIZE.. 24
OAPC_HMI_NO_UI_BG... 24
OAPC_HMI_NO_UI_DISABLED.. 24
OAPC_HMI_NO_UI_FG... 24
OAPC_HMI_NO_UI_FONT.. 24
OAPC_HMI_NO_UI_LAYOUT.. 24
OAPC_HMI_NO_UI_MINMAX.. 24
OAPC_HMI_NO_UI_RO... 24
OAPC_HMI_NO_UI_TEXT... 24
OAPC_HMI_SIZE_FIXED_ASPECT..24
OAPC_HMICAT_CONTROL.. 23
OAPC_HMICAT_DISPLAY... 23
OAPC_HMICAT_STATIC... 23
oapc_iface_.. 60
oapc_iface_exit().. 78, 80
oapc_iface_init()... 78f.
oapc_iface_send_bin().. 80
oapc_iface_send_char()... 79
oapc_iface_send_digi()... 79
oapc_iface_send_num()... 79
oapc_iface_set_authentication()... 78f.
oapc_iface_set_recv_callback().. 78
OAPC_IFACE_TYPE_BIN.. 78
OAPC_IFACE_TYPE_CHAR.. 78
OAPC_IFACE_TYPE_DIGI.. 78
OAPC_IFACE_TYPE_NUM.. 78
OAPC_IFACE_TYPE_STATE_CONNECTION_CLOSED..78f.
OAPC_IFACE_TYPE_STATE_CONNECTION_ERROR...78f.
OAPC_IFACE_TYPE_STATE_NEW_CONNECTION..78
oapc_init... 12
oapc_init()... 16
OAPC_INSTANCE_MINIMUM_INIT...10, 16
OAPC_INSTANCE_OPERATION.. 10
OAPC_INSTANCE_SEND_DATA.. 8
OAPC_INSTANCE_SEND_NAMED_DATA...8
OAPC_INSTANCE_SIMULATION.. 10
OAPC_INSTANCE_WRITE_DATA..8, 11
oapc_io_callback().. 16
OAPC_IS_DEPRECATED.. 8
oapc_iserver_... 66
oapc_ispace_connect()... 80, 82
oapc_ispace_disconnect().. 80, 83
oapc_ispace_get_handle().. 81
oapc_ispace_get_instance()...80f., 83
oapc_ispace_request_all_data()... 81f.

101

oapc_ispace_request_data().. 81f.
oapc_ispace_set_data().. 81f.
OAPC_LC_HAS_FREQ.. 19
OAPC_LC_HAS_LASEROFF... 19
OAPC_LC_HAS_LASERON... 19
OAPC_LC_HAS_POWER.. 19
oapc_libio.h... 5, 7, 22, 67, 84
oapc_mouseevent().. 26
OAPC_NUM_IO0.. 9
OAPC_NUM_IO7.. 9
OAPC_NUM_IOx.. 13
OAPC_NUM_IOy.. 65
OAPC_OK.. 27, 63
oapc_paint().. 26
oapc_path_split().. 86
OAPC_PCONTROL_MAX_CUST_PARAMS...20
oapc_read_pvalue().. 10, 16
oapc_release_bin_data().. 15
oapc_serial_port_close()... 71
oapc_serial_port_open()... 69
oapc_serial_recv_data()... 71
oapc_serial_recv().. 71
oapc_serial_send_data().. 71
oapc_serial_send()... 71
oapc_serial_usb_port_open()... 71
oapc_set_char_value()... 13f.
oapc_set_config_data(.. 46
oapc_set_config_data()..7f., 11, 48, 51
oapc_set_digi_value()... 12
oapc_set_io_callback()... 8, 15
oapc_set_load_data()... 6, 22
oapc_set_loaded_data()... 11
oapc_set_num_value()... 13
oapc_set_numminmax()... 25
oapc_set_recv_callback()... 80f.
oapc_tcp_accept_connection()... 68
oapc_tcp_closesocket().. 68
oapc_tcp_connect_to()... 67
oapc_tcp_listen_on_port().. 67f.
oapc_tcp_recv().. 67f.
oapc_tcp_send()... 67
oapc_tcp_set_blocking()... 67f.
oapc_thread_create()... 72
oapc_thread_mutex_create().. 76
oapc_thread_mutex_lock()... 74, 76
oapc_thread_mutex_unlock()... 74, 76
oapc_thread_set_prio()... 72
oapc_thread_signal_create().. 76
oapc_thread_signal_release().. 77
oapc_thread_signal_send()..76f.
oapc_thread_signal_wait().. 76f.
oapc_thread_sleep()... 72
oapc_thread_timer_start()... 76
oapc_unicode_charToStringASCII()...85
oapc_unicode_charToStringUTF16BE()...85
oapc_unicode_charToStringUTF8()..85
oapc_unicode_stringToCharASCII()...85
oapc_unicode_stringToCharUTF16BE()...85
oapc_unicode_stringToCharUTF8()...85
oapc_unicode_utf16BEToASCII()... 85
OAPC_USERPRIVI_DISABLE...8

102

OAPC_USERPRIVI_HIDE.. 8
oapc_util_alloc_bin_data().. 31, 73
oapc_util_atof_dot().. 72
oapc_util_atof()... 73
oapc_util_block_to_dbl()... 72, 80
oapc_util_check_maskbit()... 74
oapc_util_colour2gray().. 72
oapc_util_create_thread().. 72, 75ff.
oapc_util_dbl_to_block()... 72, 80
oapc_util_diff_time()... 73
oapc_util_get_time()... 73
oapc_util_get_timeofday()... 73
oapc_util_rb_alloc().. 74
oapc_util_rb_empty().. 75
oapc_util_rb_front()... 74f.
oapc_util_rb_full()... 75
oapc_util_rb_pop().. 75
oapc_util_rb_push().. 74
oapc_util_rb_release().. 74
oapc_util_release_bin_data().. 73
oapc_util_release_time()... 73
oapc_util_thread_set_prio().. 72, 75
oapc_util_thread_sleep().. 72, 76
oapc_util_to_unicode().. 72
oapc_write_data_path... 8, 11
OAPC_xxx_IOy... 63
oapc-config... 44f.
OAPCInterface.. 57f.
OAPCInterface()... 59
OAPCIServer.. 62f.
OAPCIServer().. 63
OAPCIServerListener... 62
OAPCListener... 57f.
option.. 48
out... 52

P
param.. 45
Param-Panel... 51
parampanel... 16, 44f.
parity... 69
pointsize.. 49
port... 59

R
removeOAPCIServerListener()... 64
removeOAPCListener()... 59
REPLY_DIGI... 57
REPLY_NUM.. 57
REPLY_STR... 57
requestAllData().. 64
requestData().. 64
RevokeBoardAvailable.. 90
RevokeMachineReady.. 91

S
SCANHEAD_ERRORFLAG_GALVOTEMP_X...42
SCANHEAD_ERRORFLAG_GALVOTEMP_Y...42
SCANHEAD_ERRORFLAG_GALVOTEMP_Z...42
SCANHEAD_ERRORFLAG_POSITION_X..42
SCANHEAD_ERRORFLAG_POSITION_Y..42

103

SCANHEAD_ERRORFLAG_POSITION_Z..42
SCANHEAD_ERRORFLAG_VOLTAGE_X..42
SCANHEAD_ERRORFLAG_VOLTAGE_Y..42
SCANHEAD_ERRORFLAG_VOLTAGE_Z...42
sendCommand()... 59
setAuthentication().. 59
setData()... 64
setValue()... 64
sf_hermes_create_instance()... 87
sf_hermes_delete_instance()..87f.
sf_hermes_get_prev_state()... 90
sf_hermes_open_connections()..87f.
sf_hermes_set_log_callback().. 90
sf_hermes_set_next_BoardAvailable()...90
sf_hermes_set_next_RevokeBoardAvailable()...90
sf_hermes_set_next_state_callback()...87, 89
sf_hermes_set_next_TransportFinished()..90
sf_hermes_set_prev_MachineReady()...91
sf_hermes_set_prev_RevokeMachineReady()...91
sf_hermes_set_prev_StartTransport()..91
sf_hermes_set_prev_state_callback()..87, 89
sf_hermes_set_prev_StopTransport()..91
sf_hermes_wx_create_instance()... 87
sf_hermes_wx_get_curr_board_info()..91, 94
sf_hermes_wx_set_machine_identifier()...88
sf_hermes_wx_set_notification_callback()..89
sf_hermes_wx_set_product_identifier()..87f.
sf_if_create_instance().. 92
sf_if_delete_instance().. 92
sf_if_open_connections().. 92
sf_if_set_parts().. 94
sf_if_set_slices()... 94
sf_if_set_state().. 93
sf_if_wx_append_trace_data().. 94
sf_if_wx_create_instance()... 92
sf_if_wx_set_error().. 93
sf_if_wx_set_hermes_notification()... 93
sf_if_wx_set_hermes_trace_info().. 94
sf_if_wx_set_machine_identifier()... 92
sf_if_wx_set_product_identifier().. 93
sf_if_wx_set_trace_info().. 94
shared library.. 4
Smart Factory... 87
Smart Interface... 91f.
so.. 4
SocketEntry.. 57, 60
StartTransport... 91
state... 46ff.
STATE_CONNECTION_CLOSED... 58
STATE_CONNECTION_ERROR... 58
STATE_DATA_RECEIVED.. 58
STATE_NEW_CONNECTION.. 58
stateChanged()... 58
stdpanel.. 44f.
stopbits... 69
StopTransport... 91
string... 46
struct config_image_capture... 18
struct config_info... 17
struct config_laser_controller.. 18
struct config_motion_controller... 17

104

struct config_pcontrol.. 19
struct config_zshifter... 19
struct oapc_bin_head.. 30, 80
struct oapc_char_value_block.. 80
struct oapc_digi_value_block.. 80
struct oapc_num_value_block.. 80
style.. 49

T
text.. 46
The Hermes Standard... 87
TOOLPARAM_DESCFLAG_IS_SLICE..37
TOOLPARAM_VALIDFLAG_FREQ..36
TOOLPARAM_VALIDFLAG_OFFDELAY...36
TOOLPARAM_VALIDFLAG_OFFSPEED..36
TOOLPARAM_VALIDFLAG_ON.. 36
TOOLPARAM_VALIDFLAG_ONDELAY...37
TOOLPARAM_VALIDFLAG_ONSPEED..36
TOOLPARAM_VALIDFLAG_PARAM1...37
TOOLPARAM_VALIDFLAG_PARAM2...37
TOOLPARAM_VALIDFLAG_PARAM3...37
TOOLPARAM_VALIDFLAG_PARAM4...37
TOOLPARAM_VALIDFLAG_PARAM5...37
TOOLPARAM_VALIDFLAG_PARAM6...37
TOOLPARAM_VALIDFLAG_POWER..36
TOOLPARAM_VALIDFLAG_VARIABLE_PARAM3...37
TOOLPARAM_VALIDFLAG_Z... 36
TransportFinished... 90
type.. 46ff.

U
unit... 46ff.

V
value... 48

W
weight... 49
wxPanel::Enable()... 84
wxPanel::IsEnabled().. 84
wxString.. 85
wxWidgets.. 84

.. 29

105

	1 General
	1.1 Disclaimer
	1.2 Overview
	1.3 Feedback and Contributions
	1.4 Contents of the SDK

	2 Programming Interfaces
	2.1 Flow plug-in Interface
	2.1.1 General Usage
	2.1.2 Plug-In Instances
	2.1.3 Loading and Saving Configurations
	2.1.4 Function Description
	2.1.5 BeamConstruct-specific Functions and Structures

	2.2 HMI plug-in Interface
	2.2.1 General Usage
	2.2.2 Plug-In Instances
	2.2.3 Loading and Saving Configurations
	2.2.4 Dependencies
	2.2.5 Function Description

	2.3 Error Codes
	2.4 Binary Data Handling and Structures
	2.4.1 Using of Binary Data Blocks
	2.4.2 Binary Data related Structures and Definitions
	2.4.2.1 Data-Type Dependent Parameter Usage
	2.4.2.2 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRL
	2.4.2.3 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_CTRLEND
	2.4.2.4 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_MOTIONCTRL
	2.4.2.5 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_LASERCTRL
	2.4.2.6 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_BITMAP
	2.4.2.7 Binary Data Structures OAPC_BIN_SUBTYPE_STRUCT_OUTPUTCTRL, OAPC_BIN_SUBTYPE_STRUCT_WAITINPUTCTRL and OAPC_BIN_SUBTYPE_STRUCT_INPUTCTRL
	2.4.2.8 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_SCANHEADINFO
	2.4.2.9 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_POS_CORR
	2.4.2.10 Binary Data Structure OAPC_BIN_SUBTYPE_STRUCT_DYNGEOMSTART

	2.5 Configuration XML Structure
	2.5.1 The Symbol Image for the Flow Editor
	2.5.2 Dialogue Layout and Parameter Definitions
	2.5.3 Tab Pane Types
	2.5.4 Input Fields
	2.5.4.1 Text Input Fields
	2.5.4.2 Integer Input Fields
	2.5.4.3 Floating Point Number Input Fields
	2.5.4.4 Combo Box Fields
	2.5.4.5 Colour Chooser Button
	2.5.4.6 Font Chooser Button
	2.5.4.7 Check Box
	2.5.4.8 File Load Selection
	2.5.4.9 File Save Selection
	2.5.4.10 Select Directory

	2.5.5 Param-Panel Fields
	2.5.6 Help-Panel Fields
	2.5.6.1 Input Connection Tags
	2.5.6.2 Output Connection Tags

	2.5.7 Example

	2.6 Developing own plug-ins

	3 Localisation
	3.1 Working Principle
	3.2 Choosing the Correct Translation File Name
	3.3 Translating the Applications
	3.4 Creating own Translations

	4 ControlRoom Interface
	4.1 Overview
	4.2 Data Flow
	4.3 Example Applications
	4.4 Interface Implementations
	4.4.1 Java ControlRoom Interface
	4.4.1.1 The Interface OAPCListener
	4.4.1.2 The Class OAPCInterface
	4.4.1.3 The Class SocketEntry

	4.4.2 C/C++ and other languages ControlRoom Interface

	5 Interlock Server Connection
	5.1 Data Flow
	5.2 Example Applications
	5.3 Interface Implementations
	5.3.1 Java Interlock Server Interface
	5.3.1.1 The Interface OAPCIServerListener
	5.3.1.2 The Class OAPCIServer
	5.3.1.3 The Class IServerData

	5.3.2 C/C++ and other languages Interlock Server Interface
	5.3.3 Instruction List Interlock Server Interface
	5.3.4 LUA Interlock Server Interface

	6 Shared Library liboapc
	6.1 TCP/IP Related Functions of liboapc
	6.2 Serial Interface Functions of liboapc
	6.3 Utility-Functions of liboapc
	6.3.1 Ring Buffer Utility Functions of liboapc

	6.4 Thread-Functions of liboapc
	6.5 Dynamic Library Functions of liboapc
	6.6 ControlRoom-Interface-Functions of liboapc
	6.7 Interlock Server Access Functions of liboapc

	7 Shared Library liboapcwx
	7.1 Canvas-Functions of liboapcwx
	7.2 Unicode-Functions of liboapcwx
	7.3 Path-Functions of liboapcwx

	8 Shared Library libsmartfactory
	8.1 Hermes related functions of libsmartfactory
	8.2 Smart Interface related functions of libsmartfactory

