White Paper

rev 1.0
Feb 2™ 2015

I \Math Expression Evaluator for

eval (}i} Victor H Olvera

Contents
1 Program Overview
1 Basic Description
2 Operator Table
3 Built in Functions Table
4 Static Expressions
2 Syntax Diagrams
1 Recursive Decent Map
2 Individual Syntax Diagrams
3 Classes Overview
1 tEvalScreen
2 tParseTree
3 tSyntaxNode
4 Program Testing and Observations
1 Test input/output
2 Program behavior
Further Reference
6 Future Plans

O}

1 - Program Overview

1.1 — Basic Description

The program takes in mathematical expressions and evaluates them. Its a little bit more useful
then a common calculator in that it handles variables. The look and feel is more towards a
programming language then a hand held calculator. The program is not sophisticated like MathCad and
Linux octave, instead it was kept simple, as simple as possible.

The following is an example input:

apple = 3, pear = 4
10* (applet+pear*2)

The output should be:
110.0

The aim for this project was to explore basic design of computer languages. Using the program
is straight forward hence its not covered in this paper. This paper is more of a technical reference guide
then a users guide.

1.2 - Operator Table

Description Usage Precedence
+ Addition 4
- Subtraction 4
* Multiplication 3
/ Division 3
A Exponent x Ny is x raised to the power y (right associative) 2
() Precedence grouping 1
= Variable assignment 5
+= Additive assignment X +=yis equivalenttox =x +y 5
-= Subtractive assignment X -=yisequivalenttox =x-y 5
*= Multiplicative assignment x *=y is equivalent to x = x *y 5
/= Dividend-of assignment X/=yisequivalenttox =x/y 5
i= Divisor-of assignment X i=yis equivalenttox =y /x 5
, Expression delimiter <expression>, <expression>, ... 6

1.3 — Built in Functions Table

Function
randomy()
pi()

e()

abs(x)
sqrt(x)
cbrt(x)
exp(x)
expm1(x)
In(x)
log(x)
round(x)
floor(x)
ceil(x)
cos(x)
sin(x)
tan(x)
acos(x)
asin(x)

atan(x)

Description

Returns a random number between 0 and 1
Returns pi with 15 digits precision
Returns e with 15 digits precision
Absolute value of x

Square-root of x

Cube-root of x

e to the power of x

(e to the power of x) - 1

Natural log of x

Log base 10 of x

x rounded to the nearest whole number
Floor of x

Ceiling of x

Cosine of x

Sine of x

Tangent of x

Arc-cosine of x

Arc-sine of x

Arc-tangent of x

1.4 Static Expressions

Unfortunately the program does not support user functions but it does offer support for what I
call a static expression. Static expressions work similar to lazy written functions. Say you want to work
with the line formula y=m*x+c. You can declare y to be a static expression and use it as a formula
over and over again.

Say that in our situation m=1.4, x=15, and c=3. Now you could use the line formula and determine y
by entering the following.

y = m*x+c

what that does is evaluate 1.4*15+3 to 24 . 0 and assigns that value to y. That would work OK but its
better to declare y to be static like in the next example. If you use the static keyword the program does
not evaluate the expression right away, instead it saves it as a string and assigns that string to the

variable.

static y = m*x+c

If you use 1svars to list out the variables. You would see that y is equal to the string “m*x+c”. You
can still evaluate y by entering y by itself and pressing [done]. You can change the other variables m,
x or c to determine other values of y without having to type the line equation again.

Below is the output of a clever example using static expressions and the += operator

>m=1.5, x=0, c=3
1.5, 0.0, 3.0
> static y=m*x+c, x+=1

What that did was determine y when x = 0,1, 2, 3... Every time the static expression y was
executed, 1 was also added to x and that result is also printed.

Static expressions can be used as part of other expressions like regular variables (ie: 4*y+1 is valid if

entered in the above example). When static expressions return multiple values only the first value is
used for further computation.

2 - Syntax Diagrams

The program design relied heavily on syntax diagrams. The following Syntax Diagrams and the
source code should mirror each other as much as possible.

Statement

N

CodeExpression Keyword

e

nment MathExpressmn

2.1 - Recursive Decent Map

Term

Factor

/

Value

/\

Function Variable

T~

Number Identifier

2.2 Individual Syntax Diagrams

Statement

— Keyword

— CodeExpression

Looe

]

\
Error

Keyword

—"[svars"

- » "static” identifier "=" CodeExpression —

Ilhelpll

llrepll

— "clean"

v

CodeExpression

— Assignment

— MathExpression ——

A\

Assignment

_» II+=|| _
» II=||
— |dentifier — — CodeExpression —>
_’ Il* "
_» II/_H
_»II_L_II
\v4
MathExpression
[> Term —
_ ll_ll (
\% B
Term
Factor >
_ ||*u<_
L__nm <

Factor

\Y

EV&[UE
nm

Value

v

—»Number

3 Function

> Variable

—"(" CodeExpression ")" —

Number

Digit
A A

whitespaces break the pattern

v

u.u _>D|g|t

r

Function

- »identifier "("—>")"

f

—> "CodeExpression"—>" " —

T

Variable

identifier —

|dentifier

whitespaces break the pattern

— Char >

—D>

» Digit—

1

— Char—

T_—[>

\Y%

NOTE: a Char is any character between 'a' and 'z' or 'A' and 'Z' or "'

3 - Classes Overview

3.1 — tEvalScreen

tEvalScreen is the GUI front for the program. It is simple, it only maintains a ListVview for
output and an EditText for input. A line of input is accepted by pressing the [Done] button and its
passed on to a tParseTree object. The input is processed by the tParseTree.parse(String)
method. That creates a syntax-tree which is stored internally within the tParseTree object. The
syntax-tree is then evaluated by using the tParseTree.eval () method. The output of the eval()
method is converted into a string and stored as an entry in the ListView.

Notetable identifiers within tEvalScreen:

* OnCreate() handles initialization code

* onEditorAction() handles the input and output code

* entry_list JAVA list used to store the output as strings.

* pt maintains the syntax tree (tParseTree)

* entry_count keeps the number of items in the entry_list

* R.id.entry_list_view resource identifier of the Listview
* R.id.entry_text_view resource identifier of the EditText

NOTE: The program does not save its state when the screen is rotated.

Simplified view of the tEvalScreen class

public class EvalScreen extends Activity implements OnEditorActionListener {
java.util.List<String> entry list; // used to store the output
tParseTree pt; // maintains the syntax tree
int entry count; // number of items in the entry list

@Override
protected void onCreate(Bundle savedInstanceState);

@Ooverride
public boolean onEditorAction(TextView v, int actionId, KeyEvent event);

3.2 - tParseTlree

The job of tParseTree is to take in text input, parse it, create a syntax-tree and
evaluate it. tParseTree uses recursive decent (aka. divide and conquer) to break down syntax from a
general view (represented by a statement) to a more simple view (such as a numeric constant or an
identifier). See section 2.1

The methods in tParseTree can be categorized into three groups: constructors, interface, and
parsing methods. The constructors and interface methods are for use by the GUI front-end. There are
only two interface methods to worry about: parse(string) and eval (node). parse(string)
creates the syntax-tree from text and eval (node) is used to evaluate it. The parsing methods are
prefixed by the word “Grab” hence they are refered to as the “grab” methods. The “grab” methods do
all the heavy lifting for parse (string). Each one of them is represented by a syntax diagram in
section 2.2.

The job of a “grab” method is to recognize syntax from the input string and return a syntax tree.
GrabStatement () should be able to recognize the syntax of any valid input. GrabStatement ()
achieves this by delegating its work to other methods which in turn delegate the job further until its
broken down into something that is straight forward and easily recognizable. This form of parsing is
called recursive decent. As each of the “grab” methods return; when successful; they return a piece of
syntax tree and the number of characters it processed within the input string.

The figure below is a stack trace of the path that was taken while breaking down the input
“(4+apple)*2”

Statement
CodeExpression
MathExpression

Term

Factor
Factor Value
Value Number

CodeExpression
MathExpression

Term
Term Factor
Factor Value
Value Variable
Number Identifier

4'+ Tapple'l) *'2

tparseTree contains two embedded classes: tNodeCarrier and tVarStore.
tNodeCarrier is used by the “grab” methods to return their work. A tParseTree object maintains
its variables through a key/value dictionary of type HashTable<String, tVarStore>.The
String represents the identifier and the tvarStore represents the storage space.

Simplified view of the tParseTree class

public class tParseTree {
public static final int tSTRING =
public static final int tDOUBLE

class tNodeCarrier { // used by the “grab” methods to return their work
tSyntaxNode node; // holds the syntax-tree
int run; // number of chars processed
// NOTE: if (run < 0) then node can't be evaluated (null or tERROR/tMISC)

tNodeCarrier (tSyntaxNode node, int run);

class tVarStore { // storage type for variables
int type; // either tSTRING or tDOUBLE
String str; // valid if type == tSTRING
Double num; // valid if type == tDOUBLE

tVarStore(String st // Creates a storage type tSTRING

)i
tVarStore(Double num); // Creates a storage type tDOUBLE

tSyntaxNode root; // holds the root of the syntax-tree
Hashtable<String, tVarStore> var_table; // holds the active variables
HashSet<String> fail safe; // used to detect infinite static variables
String previous_entry; // keeps the last entry; used by “rep” keyword
String current entry; // keeps current entry

constructors
tParseTree()
tParseTree(String st)

parsing methods

// represents a single value; precedence 1
tNodeCarrier GrabValue(String st);

// handles all assignment operators; precedence 5
tNodeCarrier GrabAssignment (String st);

// represents a mathematical expression
// handles '+' or '—' operators; precedence 4
tNodeCarrier GrabMathExpression(String st);

// represents a term
// handles '*' or '/' operators; precedence 3
tNodeCarrier GrabTerm(String st);

// represents a factor
// handles '"' operator; precedence 2
tNodeCarrier GrabFactor(String st);

// handles a keyword
tNodeCarrier GrabKeyword(String st);

// represents a simple programming expression
tNodeCarrier GrabCodeExpression(String st);

// represents a single line of code
// handles the ',' delimiter
tNodeCarrier GrabStatement (String st);

// represents a numerical constant
tNodeCarrier GrabNumber (String st);

// represents a function call
tNodeCarrier GrabFunction(String st);

// represents a variable
tNodeCarrier GrabVariable(String st);

// represents an identifier
tNodeCarrier GrabIdentifier(String st, boolean filter);

// utility method used to skip white spaces

int CountWhiteSpaces(String st);

interface methods

// NOTE: the syntax-tree is stored internally in root

// the tree is evaluated recursively
// calling eval() is the same as eval(root)

void Parse(String st); // parses the string and creates a syntax-tree
tSyntaxNode eval(); // evaluates the whole syntax-tree
tSyntaxNode eval (tSyntaxNode node); // evaluates a node in the syntax-tree

Example usage of tParseTree
A tParseTree object can be initialized as follows:

an empty tree
tParseTree objl = new tParseTree();

a tree with some variables initialized
tParseTree obj2 = new tParseTree(“x=1, y=10, a=b=c=0");

You can submit new input using the parse(String) method:
objl.parse(“apple = 4, pear = 17, grape = 71");

That would create a syntax-tree but not evaluate it. That means that the variables: apple, pear and grape
would not be valid yet. Variables are not created until the syntax-tree is evaluated. Evaluation is done
by calling the eval () method.

objl.eval();

3.2 - tSyntaxNode

Every node within the syntax-tree is represented by the tSyntaxNode class. In mathematics
everything is evaluated to a number. A syntax-tree can be described as a dependency tree. The leaves
such tree would be entities that do not depend on anything for evaluation: for example a number or a
variable. A node in the middle of a tree could be an operator such as “+”. An operator depends on
operands for evaluation. Hence in the case of “a+b”, the variables “a” and “b” would be the the leaves
of the “+” node.

Below is an example of the syntax-tree generated by the input “(4+apple)*2”. Please observe that

parenthesis are not needed in a syntax-tree. Grouping and precedence is inherited within the location of
a node.

/\

/ \
apple

NOTE: Unless its an error or special output from a keyword; any node should be evaluable into a
floating point number.

Simplified view of the tSyntaxNode class

public class tSyntaxNode {
public static final int cVALUE
public static final int cIDENTIFIER
public static final int cOPERATOR
public static final int cFUNCTION
public static final int cVARIABLE
public static final int cPARSE
public static final int cMISC
public static final int cERROR

node contains a double
valid identifier

math operator

function call

variable

a parse-able string

text output from a keyword
error

N o0 W N

= Ne Ne Ne Ne Ne Ne ~Ne

~e

int type; // node type

double value; // valid if type == cVALUE

String ident; // valid if type == (cIDENTIFIER || cFUNCTION || cVARIABLE)
String aux_msg; // valid if type == (cMISC || cPARSE || cERROR)

int token; // valid if type == cOPERATOR

tree links

tSyntaxNode parent = null;
tSyntaxNode sibling = null;
tSyntaxNode child = null;

constructors

// initializes a cVALUE type
tSyntaxNode (double value);

// initializes a cOPERATOR type
tSyntaxNode (int type, int token);

// used to initialize any of the types that use “ident” or “aux_msg”
tSyntaxNode (int type, String ident, String msg);

// a somewhat smart version of the above constructor
// can be used for cIDENTIFIER, cFUNCTION, cVARIABLE, cMISC, cPARSE, cERROR
tSyntaxNode (int type, String st);

methods
void AddChild(tSyntaxNode child); // appends a child to self (“this”)

4 — Program Testing and Observations

4.1 — Test Input/Output

Test# Description

1 Simple whole number in 4
out 4.0

2 Simple floating point number in 1.5
out 1.5

3 Magnitude upper limit in 9223372036854775807
out 9223372036854776E18

4 Magnitude lower limit in -9223372036854775807
out -9223372036854776E18

5 Exceeding upper limit (magnitude) in 9223372036854775808
out ERROR

6 Exceeding lower limit (magnitude) in -9223372036854775808
out ERROR

7 Precision limit in 0.000000000000000001
out 1.0E-18

8 Exceeding precision limit in 0.0000000000000000001
out 0.0

9 A digit is required on the left side of the decimal ~ in 0.
point out ERROR

10 A digit is required on the right side of the in .0
decimal point out ERROR

11 Variable assignment in apple=2
out 2.0

12 Accessing preinitialized variable in apple
apple = 2 out 2.0

13 Accessing uninitialized variable in pear
pear = <uninitialized> G ERROR

14 Initializing multiple variables in a=b=c=7
out 7.0

15 Variable assignment using another variable in pear=apple

apple = 2 out 2.0

Test # Description

16 Unrecognizable character sequence

17 Illegal variable name 1

18 Illegal variable name 2

19 Illegal variable name 3 (identifier may not have a

leading digit)

20 Valid variable name using upper/lower case
letters, digits and “_”

21 Pressing [Done] with empty string

22 Entering the “Isvars” keyword

23 Entering the “rep” keyword

24 Entering the “help” keyword

25 Entering the “clean” keyword

26 Attempting to assign a value to a keyword

27 Attempting to assign a keyword to a variable

28 Simple addition

29 Simple subtraction

30 Subtracting a negative number

in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out

in
out
in
out
in
out
in
out
in
out

%&$
ERROR

or@ange=4
ERROR

cindy.crawford=9
ERROR

15cows=20
ERROR

_UPlow12=50
50.0

Repeats last entry

lsvars

Shows variable listing

rep

Repeats last entry

help

Shows a quick reference guide

clean

All the variables should be deleted
and “done!” should appear

rep=23
ERROR

apple=rep
ERROR

2+2
4.0

4-8
-4.0

3--8
11.0

Test #

Description

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Successive additions

Mixed additions and subtractions

Simple multiplication

Simple division

Successive multiplications

Successive divisions

Simple use of the “A” operator
Successive use of the “A” operator

Note: The “A” operator is right-associative
Complex expression

Grouping parenthesis

Assignment of a complex expression to a

variable

Variables within a complex expression
apple = 2 and pear = 8

Function call

Too many parameters

Missing parameters

in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out

in
out
in
out
in
out

1.3+2.5+3+4
10.8

2-6+7.4-0.3-5
-1.8999999999999995

4.3*3
12.899999999999999

2/0.5
4.0

5%4*3*2*1
120.0

5/3/2/0.5
1.6666666666666667

372
9.0

2N3N2
512.0

4+3*%2-2*2/N8-10/2
14.0

(4+3)*2-2*27(8-10)/2

13.75

apple=(3+7)/5
2.0

(2+3)*apple-(2+pear/2)

4.0

Note: For exhaustive testing, the next four tests should be performed on all functions

sqrt(4)
2.0

sqrt(4,2)
ERROR

sqrt()
ERROR

Test #

Description

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Improper parameters

Variable assignment using a function
Nested function calls

Complex expression as parameter

apple = 2

Using “+=" operator

apple = 2
Using “-=" operator
apple = 3

Using “*=" operator
apple = 2

Using “/=" operator
apple = 6

Using “i=" operator
apple = 2

Using “i=" operator without using spaces

between variable and operator
apple = 0.5

Simple static variable

Using static variable in other expressions

static myexp=2+4

Static variable with syntax error

Static variable with uninitialized variables

grape = <uninitialized>

Static variable with initialized variables

grape = 0.5

in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out
in
out

in
out

in
out

in
out

in
out

in
out

sqrt($#@)
ERROR

area=4.7*pi()N"2
46.38714068511998

cos(pi())
-1.0

cos((5+2)*2/apple*pi())
-1.0

apple+=1
3.0

apple-=1
2.0

apple*=3
6.0

apple/=3
2.0

apple i= 1
0.5

applei=1

Variable apple should be unaffected
and a new variable applei is created

static myexp=2+4

Should be listed as “2+4” in Isvars

myexp*4+7
31.0

static myexp=2+3+

ERROR will be thrown after
executing myexp

static myexp=12*grape

ERROR will be thrown after
executing myexp

static myexp=12*grape

Executing myexp will yield 6.0

Test #

Description

61

62

63

64

65

66

67

68

Recursively assigning a static variable to itself

Creating a race condition using static variables

Entering multiple expressions

Multiple expressions, initializing a variable and
using it. Test #1 — left to right (x is uninitialized)

Multiple expressions, initializing a variable and
using it, test #2 — right to left (y is uninitialized)

Static variable with self-modifying variable
X =0

Static variable with multiple expressions and a
self-modifying variable
X =0

Using a static variable with multiple expressions

in other expressions
static myexp=1,2,3,4

4.2 — Program Behavior

NOTE 1:

Errors are not straight forward

in
out

in

out

in
out
in
out
in
out
in
out

in
out

in

out

static myexp=myexp

ERROR will be thrown after
executing myexp

static a=b
static b=a

ERROR will be thrown trying to
execute either a orb

2%5A2, 242
50.0, 4.0

X*3+8
2.0, 14.0

X=2,

y*3+8, y=2
ERROR, 2.0

static myexp=(x+=1)*2

Every time myexp is executed the
next multiple of 2 should is shown,
starting with 2.0

static myexp=x*2,x+=2

Every time myexp is executed two
columns should appear, the first
containing multiples of 4 the other
multiples of 2, starting with 0.0, 2.0

myexp*2

2.0
NOTE: Only the first value is used

for computations. In this case
1*2=2.0

The errors reported are not always useful because that requires extra code. The “grab” methods
work as a gateways or masks that only allow valid syntax to go thru and for the most part they don't
pay attention as to why did a particular text failed as valid syntax. To be able to do that requires extra
code and thats beyond the scope of this version.

NOTE 2: Dangling characters found - explanation

Most of the time when a “grab” method fails it does not report a syntax error. As explained in
note 1, they adopt a hands-off approach when dealing with errors. In general this approach causes a lot
of permissiveness with the input. Take the following example:

pi() = 49.7

In this case pi() is a function call and can't be assigned a value. The error should have been
caught by CodeExpression() but its not because “pi()” by itself represents a valid expression and thats
what it returns. CodeExpression() does not look ahead to check if you are trying to assign a value to it.
The text following the call “= 49.7” is simply left unprocessed. In the end this type of error is caught
by whom-ever calls GrabStatement() because when GrabStatement() returns all the input text should
have been processed. Thats where the “dangling characters found” error comes from.

NOTE 3: pi = pi() is a valid assignment.

Identifier name space is different between variables and functions; they don't cause conflict.
Functions are detected by the parenthesis "(...)" after their identifier. Here the variable pi can coexist
with the function pi.

NOTE 4: Infinite expansion of static variables

Trying to execute any of the following static variables would yield an error:
static x = x

static apple = pear

static pear = apple

They yield an error because they contain a string that expands on itself infinitely. This type of infinite
expansion is caught using the fail safe object during a call to eval() under the cPARSE section.

NOTE 5: Variable creation

Normal variables are created by the eval() method under the cOPERATOR section, '=' token.
Static variables are created by the GrabKeyword() method under the “static” if/then statement.

5 — Further Reference
Wikipedia Entry — Syntax Diagrams
http://en.wikipedia.org/wiki/Syntax diagram

Wikipedia Entry — Abstract Syntax Tree
http://en.wikipedia.org/wiki/Abstract syntax tree

Wikipedia Entry — Recursive Descent
http://en.wikipedia.org/wiki/Recursive descent parser

Compiler Construction — Niklaus Wirth (1996/2005)
http://www.ethoberon.ethz.ch/WirthPubl/CBEAIL. pdf

6 — Future Plans

Personally I am interested in writing a script language that can handle user defined functions,
branching and loops. Hence I'll be adding those features to this program. Thats what I have planned for
version 2.0

A cool way to add international support is to modify GrabIdentifier() to allow it to support other
alphabets such as Cyrillic. I don't see happening because I only know the Latin alphabet.

Adding support for plotting or graphing functions would not be too difficult. That would be a
feature for version 3.0.

http://en.wikipedia.org/wiki/Syntax_diagram
http://www.ethoberon.ethz.ch/WirthPubl/CBEAll.pdf
http://en.wikipedia.org/wiki/Recursive_descent_parser
http://en.wikipedia.org/wiki/Abstract_syntax_tree

