const std = @import("std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const assert = debug.assert;
const math = std.math;
const mem = @This();
const meta = std.meta;
const trait = meta.trait;
const testing = std.testing;
const Endian = std.builtin.Endian;
const native_endian = builtin.cpu.arch.endian();
pub const page_size = switch (builtin.cpu.arch) {
    .wasm32, .wasm64 => 64 * 1024,
    .aarch64 => switch (builtin.os.tag) {
        .macos, .ios, .watchos, .tvos => 16 * 1024,
        else => 4 * 1024,
    },
    .sparc64 => 8 * 1024,
    else => 4 * 1024,
};
pub const byte_size_in_bits = 8;
pub const Allocator = @import("mem/Allocator.zig");
pub fn ValidationAllocator(comptime T: type) type {
    return struct {
        const Self = @This();
        underlying_allocator: T,
        pub fn init(underlying_allocator: T) @This() {
            return .{
                .underlying_allocator = underlying_allocator,
            };
        }
        pub fn allocator(self: *Self) Allocator {
            return Allocator.init(self, alloc, resize, free);
        }
        fn getUnderlyingAllocatorPtr(self: *Self) Allocator {
            if (T == Allocator) return self.underlying_allocator;
            return self.underlying_allocator.allocator();
        }
        pub fn alloc(
            self: *Self,
            n: usize,
            ptr_align: u29,
            len_align: u29,
            ret_addr: usize,
        ) Allocator.Error![]u8 {
            assert(n > 0);
            assert(mem.isValidAlign(ptr_align));
            if (len_align != 0) {
                assert(mem.isAlignedAnyAlign(n, len_align));
                assert(n >= len_align);
            }
            const underlying = self.getUnderlyingAllocatorPtr();
            const result = try underlying.rawAlloc(n, ptr_align, len_align, ret_addr);
            assert(mem.isAligned(@ptrToInt(result.ptr), ptr_align));
            if (len_align == 0) {
                assert(result.len == n);
            } else {
                assert(result.len >= n);
                assert(mem.isAlignedAnyAlign(result.len, len_align));
            }
            return result;
        }
        pub fn resize(
            self: *Self,
            buf: []u8,
            buf_align: u29,
            new_len: usize,
            len_align: u29,
            ret_addr: usize,
        ) ?usize {
            assert(buf.len > 0);
            if (len_align != 0) {
                assert(mem.isAlignedAnyAlign(new_len, len_align));
                assert(new_len >= len_align);
            }
            const underlying = self.getUnderlyingAllocatorPtr();
            const result = underlying.rawResize(buf, buf_align, new_len, len_align, ret_addr) orelse return null;
            if (len_align == 0) {
                assert(result == new_len);
            } else {
                assert(result >= new_len);
                assert(mem.isAlignedAnyAlign(result, len_align));
            }
            return result;
        }
        pub fn free(
            self: *Self,
            buf: []u8,
            buf_align: u29,
            ret_addr: usize,
        ) void {
            _ = self;
            _ = buf_align;
            _ = ret_addr;
            assert(buf.len > 0);
        }
        pub usingnamespace if (T == Allocator or !@hasDecl(T, "reset")) struct {} else struct {
            pub fn reset(self: *Self) void {
                self.underlying_allocator.reset();
            }
        };
    };
}
pub fn validationWrap(allocator: anytype) ValidationAllocator(@TypeOf(allocator)) {
    return ValidationAllocator(@TypeOf(allocator)).init(allocator);
}
pub fn alignAllocLen(full_len: usize, alloc_len: usize, len_align: u29) usize {
    assert(alloc_len > 0);
    assert(alloc_len >= len_align);
    assert(full_len >= alloc_len);
    if (len_align == 0)
        return alloc_len;
    const adjusted = alignBackwardAnyAlign(full_len, len_align);
    assert(adjusted >= alloc_len);
    return adjusted;
}
const fail_allocator = Allocator{
    .ptr = undefined,
    .vtable = &failAllocator_vtable,
};
const failAllocator_vtable = Allocator.VTable{
    .alloc = failAllocatorAlloc,
    .resize = Allocator.NoResize(anyopaque).noResize,
    .free = Allocator.NoOpFree(anyopaque).noOpFree,
};
fn failAllocatorAlloc(_: *anyopaque, n: usize, alignment: u29, len_align: u29, ra: usize) Allocator.Error![]u8 {
    _ = n;
    _ = alignment;
    _ = len_align;
    _ = ra;
    return error.OutOfMemory;
}
test "Allocator basics" {
    try testing.expectError(error.OutOfMemory, fail_allocator.alloc(u8, 1));
    try testing.expectError(error.OutOfMemory, fail_allocator.allocSentinel(u8, 1, 0));
}
test "Allocator.resize" {
    const primitiveIntTypes = .{
        i8,
        u8,
        i16,
        u16,
        i32,
        u32,
        i64,
        u64,
        i128,
        u128,
        isize,
        usize,
    };
    inline for (primitiveIntTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);
        for (values) |*v, i| v.* = @intCast(T, i);
        values = testing.allocator.resize(values, values.len + 10) orelse return error.OutOfMemory;
        try testing.expect(values.len == 110);
    }
    const primitiveFloatTypes = .{
        f16,
        f32,
        f64,
        f128,
    };
    inline for (primitiveFloatTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);
        for (values) |*v, i| v.* = @intToFloat(T, i);
        values = testing.allocator.resize(values, values.len + 10) orelse return error.OutOfMemory;
        try testing.expect(values.len == 110);
    }
}
pub fn copy(comptime T: type, dest: []T, source: []const T) void {
    
    
    
    @setRuntimeSafety(false);
    assert(dest.len >= source.len);
    for (source) |s, i|
        dest[i] = s;
}
pub fn copyBackwards(comptime T: type, dest: []T, source: []const T) void {
    
    
    
    @setRuntimeSafety(false);
    assert(dest.len >= source.len);
    var i = source.len;
    while (i > 0) {
        i -= 1;
        dest[i] = source[i];
    }
}
pub fn set(comptime T: type, dest: []T, value: T) void {
    for (dest) |*d|
        d.* = value;
}
pub fn zeroes(comptime T: type) T {
    switch (@typeInfo(T)) {
        .ComptimeInt, .Int, .ComptimeFloat, .Float => {
            return @as(T, 0);
        },
        .Enum, .EnumLiteral => {
            return @intToEnum(T, 0);
        },
        .Void => {
            return {};
        },
        .Bool => {
            return false;
        },
        .Optional, .Null => {
            return null;
        },
        .Struct => |struct_info| {
            if (@sizeOf(T) == 0) return undefined;
            if (struct_info.layout == .Extern) {
                var item: T = undefined;
                set(u8, asBytes(&item), 0);
                return item;
            } else {
                var structure: T = undefined;
                inline for (struct_info.fields) |field| {
                    if (!field.is_comptime) {
                        @field(structure, field.name) = zeroes(@TypeOf(@field(structure, field.name)));
                    }
                }
                return structure;
            }
        },
        .Pointer => |ptr_info| {
            switch (ptr_info.size) {
                .Slice => {
                    if (ptr_info.sentinel) |sentinel| {
                        if (ptr_info.child == u8 and @ptrCast(*const u8, sentinel).* == 0) {
                            return ""; 
                        }
                        @compileError("Can't set a sentinel slice to zero. This would require allocating memory.");
                    } else {
                        return &[_]ptr_info.child{};
                    }
                },
                .C => {
                    return null;
                },
                .One, .Many => {
                    @compileError("Can't set a non nullable pointer to zero.");
                },
            }
        },
        .Array => |info| {
            if (info.sentinel) |sentinel_ptr| {
                const sentinel = @ptrCast(*align(1) const info.child, sentinel_ptr).*;
                return [_:sentinel]info.child{zeroes(info.child)} ** info.len;
            }
            return [_]info.child{zeroes(info.child)} ** info.len;
        },
        .Vector => |info| {
            return @splat(info.len, zeroes(info.child));
        },
        .Union => |info| {
            if (comptime meta.containerLayout(T) == .Extern) {
                
                
                return @unionInit(T, info.fields[0].name, zeroes(info.fields[0].field_type));
            }
            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
        .ErrorUnion,
        .ErrorSet,
        .Fn,
        .BoundFn,
        .Type,
        .NoReturn,
        .Undefined,
        .Opaque,
        .Frame,
        .AnyFrame,
        => {
            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
    }
}
test "zeroes" {
    if (builtin.zig_backend == .stage1 or builtin.zig_backend == .stage2_llvm) {
        
        
        return error.SkipZigTest;
    }
    const C_struct = extern struct {
        x: u32,
        y: u32,
    };
    var a = zeroes(C_struct);
    a.y += 10;
    try testing.expect(a.x == 0);
    try testing.expect(a.y == 10);
    const ZigStruct = struct {
        comptime comptime_field: u8 = 5,
        integral_types: struct {
            integer_0: i0,
            integer_8: i8,
            integer_16: i16,
            integer_32: i32,
            integer_64: i64,
            integer_128: i128,
            unsigned_0: u0,
            unsigned_8: u8,
            unsigned_16: u16,
            unsigned_32: u32,
            unsigned_64: u64,
            unsigned_128: u128,
            float_32: f32,
            float_64: f64,
        },
        pointers: struct {
            optional: ?*u8,
            c_pointer: [*c]u8,
            slice: []u8,
            nullTerminatedString: [:0]const u8,
        },
        array: [2]u32,
        vector_u32: @Vector(2, u32),
        vector_f32: @Vector(2, f32),
        vector_bool: @Vector(2, bool),
        optional_int: ?u8,
        empty: void,
        sentinel: [3:0]u8,
    };
    const b = zeroes(ZigStruct);
    try testing.expectEqual(@as(u8, 5), b.comptime_field);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_0);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_8);
    try testing.expectEqual(@as(i16, 0), b.integral_types.integer_16);
    try testing.expectEqual(@as(i32, 0), b.integral_types.integer_32);
    try testing.expectEqual(@as(i64, 0), b.integral_types.integer_64);
    try testing.expectEqual(@as(i128, 0), b.integral_types.integer_128);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_0);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_8);
    try testing.expectEqual(@as(u16, 0), b.integral_types.unsigned_16);
    try testing.expectEqual(@as(u32, 0), b.integral_types.unsigned_32);
    try testing.expectEqual(@as(u64, 0), b.integral_types.unsigned_64);
    try testing.expectEqual(@as(u128, 0), b.integral_types.unsigned_128);
    try testing.expectEqual(@as(f32, 0), b.integral_types.float_32);
    try testing.expectEqual(@as(f64, 0), b.integral_types.float_64);
    try testing.expectEqual(@as(?*u8, null), b.pointers.optional);
    try testing.expectEqual(@as([*c]u8, null), b.pointers.c_pointer);
    try testing.expectEqual(@as([]u8, &[_]u8{}), b.pointers.slice);
    try testing.expectEqual(@as([:0]const u8, ""), b.pointers.nullTerminatedString);
    for (b.array) |e| {
        try testing.expectEqual(@as(u32, 0), e);
    }
    try testing.expectEqual(@splat(2, @as(u32, 0)), b.vector_u32);
    try testing.expectEqual(@splat(2, @as(f32, 0.0)), b.vector_f32);
    try testing.expectEqual(@splat(2, @as(bool, false)), b.vector_bool);
    try testing.expectEqual(@as(?u8, null), b.optional_int);
    for (b.sentinel) |e| {
        try testing.expectEqual(@as(u8, 0), e);
    }
    const C_union = extern union {
        a: u8,
        b: u32,
    };
    var c = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), c.a);
    comptime var comptime_union = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), comptime_union.a);
    
    _ = zeroes(struct { handle: void });
}
pub fn zeroInit(comptime T: type, init: anytype) T {
    const Init = @TypeOf(init);
    switch (@typeInfo(T)) {
        .Struct => |struct_info| {
            switch (@typeInfo(Init)) {
                .Struct => |init_info| {
                    var value = std.mem.zeroes(T);
                    inline for (struct_info.fields) |field| {
                        if (field.default_value) |default_value_ptr| {
                            const default_value = @ptrCast(*align(1) const field.field_type, default_value_ptr).*;
                            @field(value, field.name) = default_value;
                        }
                    }
                    if (init_info.is_tuple) {
                        inline for (init_info.fields) |field, i| {
                            @field(value, struct_info.fields[i].name) = @field(init, field.name);
                        }
                        return value;
                    }
                    inline for (init_info.fields) |field| {
                        if (!@hasField(T, field.name)) {
                            @compileError("Encountered an initializer for `" ++ field.name ++ "`, but it is not a field of " ++ @typeName(T));
                        }
                        switch (@typeInfo(field.field_type)) {
                            .Struct => {
                                @field(value, field.name) = zeroInit(field.field_type, @field(init, field.name));
                            },
                            else => {
                                @field(value, field.name) = @field(init, field.name);
                            },
                        }
                    }
                    return value;
                },
                else => {
                    @compileError("The initializer must be a struct");
                },
            }
        },
        else => {
            @compileError("Can't default init a " ++ @typeName(T));
        },
    }
}
test "zeroInit" {
    const I = struct {
        d: f64,
    };
    const S = struct {
        a: u32,
        b: ?bool,
        c: I,
        e: [3]u8,
        f: i64 = -1,
    };
    const s = zeroInit(S, .{
        .a = 42,
    });
    try testing.expectEqual(S{
        .a = 42,
        .b = null,
        .c = .{
            .d = 0,
        },
        .e = [3]u8{ 0, 0, 0 },
        .f = -1,
    }, s);
    const Color = struct {
        r: u8,
        g: u8,
        b: u8,
        a: u8,
    };
    const c = zeroInit(Color, .{ 255, 255 });
    try testing.expectEqual(Color{
        .r = 255,
        .g = 255,
        .b = 0,
        .a = 0,
    }, c);
    const Foo = struct {
        foo: u8 = 69,
        bar: u8,
    };
    const f = zeroInit(Foo, .{});
    try testing.expectEqual(Foo{
        .foo = 69,
        .bar = 0,
    }, f);
    const Bar = struct {
        foo: u32 = 666,
        bar: u32 = 420,
    };
    const b = zeroInit(Bar, .{69});
    try testing.expectEqual(Bar{
        .foo = 69,
        .bar = 420,
    }, b);
}
pub fn order(comptime T: type, lhs: []const T, rhs: []const T) math.Order {
    const n = math.min(lhs.len, rhs.len);
    var i: usize = 0;
    while (i < n) : (i += 1) {
        switch (math.order(lhs[i], rhs[i])) {
            .eq => continue,
            .lt => return .lt,
            .gt => return .gt,
        }
    }
    return math.order(lhs.len, rhs.len);
}
test "order" {
    try testing.expect(order(u8, "abcd", "bee") == .lt);
    try testing.expect(order(u8, "abc", "abc") == .eq);
    try testing.expect(order(u8, "abc", "abc0") == .lt);
    try testing.expect(order(u8, "", "") == .eq);
    try testing.expect(order(u8, "", "a") == .lt);
}
pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool {
    return order(T, lhs, rhs) == .lt;
}
test "lessThan" {
    try testing.expect(lessThan(u8, "abcd", "bee"));
    try testing.expect(!lessThan(u8, "abc", "abc"));
    try testing.expect(lessThan(u8, "abc", "abc0"));
    try testing.expect(!lessThan(u8, "", ""));
    try testing.expect(lessThan(u8, "", "a"));
}
pub fn eql(comptime T: type, a: []const T, b: []const T) bool {
    if (a.len != b.len) return false;
    if (a.ptr == b.ptr) return true;
    for (a) |item, index| {
        if (b[index] != item) return false;
    }
    return true;
}
pub fn indexOfDiff(comptime T: type, a: []const T, b: []const T) ?usize {
    const shortest = math.min(a.len, b.len);
    if (a.ptr == b.ptr)
        return if (a.len == b.len) null else shortest;
    var index: usize = 0;
    while (index < shortest) : (index += 1) if (a[index] != b[index]) return index;
    return if (a.len == b.len) null else shortest;
}
test "indexOfDiff" {
    try testing.expectEqual(indexOfDiff(u8, "one", "one"), null);
    try testing.expectEqual(indexOfDiff(u8, "one two", "one"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one", "one two"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one twx", "one two"), 6);
    try testing.expectEqual(indexOfDiff(u8, "xne", "one"), 0);
}
pub fn Span(comptime T: type) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?Span(optional_info.child);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |info| {
                        new_ptr_info.child = info.child;
                        new_ptr_info.sentinel = info.sentinel;
                    },
                    else => @compileError("invalid type given to std.mem.Span"),
                },
                .C => {
                    new_ptr_info.sentinel = &@as(ptr_info.child, 0);
                    new_ptr_info.is_allowzero = false;
                },
                .Many, .Slice => {},
            }
            new_ptr_info.size = .Slice;
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => @compileError("invalid type given to std.mem.Span"),
    }
}
test "Span" {
    try testing.expect(Span(*[5]u16) == []u16);
    try testing.expect(Span(?*[5]u16) == ?[]u16);
    try testing.expect(Span(*const [5]u16) == []const u16);
    try testing.expect(Span(?*const [5]u16) == ?[]const u16);
    try testing.expect(Span([]u16) == []u16);
    try testing.expect(Span(?[]u16) == ?[]u16);
    try testing.expect(Span([]const u8) == []const u8);
    try testing.expect(Span(?[]const u8) == ?[]const u8);
    try testing.expect(Span([:1]u16) == [:1]u16);
    try testing.expect(Span(?[:1]u16) == ?[:1]u16);
    try testing.expect(Span([:1]const u8) == [:1]const u8);
    try testing.expect(Span(?[:1]const u8) == ?[:1]const u8);
    try testing.expect(Span([*:1]u16) == [:1]u16);
    try testing.expect(Span(?[*:1]u16) == ?[:1]u16);
    try testing.expect(Span([*:1]const u8) == [:1]const u8);
    try testing.expect(Span(?[*:1]const u8) == ?[:1]const u8);
    try testing.expect(Span([*c]u16) == [:0]u16);
    try testing.expect(Span(?[*c]u16) == ?[:0]u16);
    try testing.expect(Span([*c]const u8) == [:0]const u8);
    try testing.expect(Span(?[*c]const u8) == ?[:0]const u8);
}
pub fn span(ptr: anytype) Span(@TypeOf(ptr)) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        if (ptr) |non_null| {
            return span(non_null);
        } else {
            return null;
        }
    }
    const Result = Span(@TypeOf(ptr));
    const l = len(ptr);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @ptrCast(*align(1) const ptr_info.child, s_ptr).*;
        return ptr[0..l :s];
    } else {
        return ptr[0..l];
    }
}
test "span" {
    var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
    const ptr = @as([*:3]u16, array[0..2 :3]);
    try testing.expect(eql(u16, span(ptr), &[_]u16{ 1, 2 }));
    try testing.expect(eql(u16, span(&array), &[_]u16{ 1, 2, 3, 4, 5 }));
    try testing.expectEqual(@as(?[:0]u16, null), span(@as(?[*:0]u16, null)));
}
fn SliceTo(comptime T: type, comptime end: meta.Elem(T)) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?SliceTo(optional_info.child, end);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            new_ptr_info.size = .Slice;
            switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |array_info| {
                        new_ptr_info.child = array_info.child;
                        
                        
                        
                        if (array_info.sentinel) |sentinel_ptr| {
                            const sentinel = @ptrCast(*align(1) const array_info.child, sentinel_ptr).*;
                            if (end == sentinel) {
                                new_ptr_info.sentinel = &end;
                            } else {
                                new_ptr_info.sentinel = null;
                            }
                        }
                    },
                    else => {},
                },
                .Many, .Slice => {
                    
                    
                    
                    if (ptr_info.sentinel) |sentinel_ptr| {
                        const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                        if (end == sentinel) {
                            new_ptr_info.sentinel = &end;
                        } else {
                            new_ptr_info.sentinel = null;
                        }
                    }
                },
                .C => {
                    new_ptr_info.sentinel = &end;
                    
                    assert(new_ptr_info.is_allowzero);
                    new_ptr_info.is_allowzero = false;
                },
            }
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(T));
}
pub fn sliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) SliceTo(@TypeOf(ptr), end) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        const non_null = ptr orelse return null;
        return sliceTo(non_null, end);
    }
    const Result = SliceTo(@TypeOf(ptr), end);
    const length = lenSliceTo(ptr, end);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @ptrCast(*align(1) const ptr_info.child, s_ptr).*;
        return ptr[0..length :s];
    } else {
        return ptr[0..length];
    }
}
test "sliceTo" {
    try testing.expectEqualSlices(u8, "aoeu", sliceTo("aoeu", 0));
    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, &array, sliceTo(&array, 0));
        try testing.expectEqualSlices(u16, array[0..3], sliceTo(array[0..3], 0));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(&array, 3));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(array[0..3], 3));
        const sentinel_ptr = @ptrCast([*:5]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_ptr, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_ptr, 99));
        const optional_sentinel_ptr = @ptrCast(?[*:5]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(optional_sentinel_ptr, 3).?);
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(optional_sentinel_ptr, 99).?);
        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(c_ptr, 3));
        const slice: []u16 = &array;
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(slice, 3));
        try testing.expectEqualSlices(u16, &array, sliceTo(slice, 99));
        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_slice, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, sentinel_array[0..2], sliceTo(&sentinel_array, 3));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 0));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 99));
    }
    try testing.expectEqual(@as(?[]u8, null), sliceTo(@as(?[]u8, null), 0));
}
fn lenSliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) usize {
    switch (@typeInfo(@TypeOf(ptr))) {
        .Pointer => |ptr_info| switch (ptr_info.size) {
            .One => switch (@typeInfo(ptr_info.child)) {
                .Array => |array_info| {
                    if (array_info.sentinel) |sentinel_ptr| {
                        const sentinel = @ptrCast(*align(1) const array_info.child, sentinel_ptr).*;
                        if (sentinel == end) {
                            return indexOfSentinel(array_info.child, end, ptr);
                        }
                    }
                    return indexOfScalar(array_info.child, ptr, end) orelse array_info.len;
                },
                else => {},
            },
            .Many => if (ptr_info.sentinel) |sentinel_ptr| {
                const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                
                
                
                var i: usize = 0;
                while (ptr[i] != end and ptr[i] != sentinel) i += 1;
                return i;
            },
            .C => {
                assert(ptr != null);
                return indexOfSentinel(ptr_info.child, end, ptr);
            },
            .Slice => {
                if (ptr_info.sentinel) |sentinel_ptr| {
                    const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                    if (sentinel == end) {
                        return indexOfSentinel(ptr_info.child, sentinel, ptr);
                    }
                }
                return indexOfScalar(ptr_info.child, ptr, end) orelse ptr.len;
            },
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(@TypeOf(ptr)));
}
test "lenSliceTo" {
    try testing.expect(lenSliceTo("aoeu", 0) == 4);
    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&array, 0));
        try testing.expectEqual(@as(usize, 3), lenSliceTo(array[0..3], 0));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&array, 3));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(array[0..3], 3));
        const sentinel_ptr = @ptrCast([*:5]u16, &array);
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_ptr, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_ptr, 99));
        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqual(@as(usize, 2), lenSliceTo(c_ptr, 3));
        const slice: []u16 = &array;
        try testing.expectEqual(@as(usize, 2), lenSliceTo(slice, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(slice, 99));
        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_slice, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&sentinel_array, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 0));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 99));
    }
}
pub fn len(value: anytype) usize {
    return switch (@typeInfo(@TypeOf(value))) {
        .Array => |info| info.len,
        .Vector => |info| info.len,
        .Pointer => |info| switch (info.size) {
            .One => switch (@typeInfo(info.child)) {
                .Array => value.len,
                else => @compileError("invalid type given to std.mem.len"),
            },
            .Many => {
                const sentinel_ptr = info.sentinel orelse
                    @compileError("length of pointer with no sentinel");
                const sentinel = @ptrCast(*align(1) const info.child, sentinel_ptr).*;
                return indexOfSentinel(info.child, sentinel, value);
            },
            .C => {
                assert(value != null);
                return indexOfSentinel(info.child, 0, value);
            },
            .Slice => value.len,
        },
        .Struct => |info| if (info.is_tuple) {
            return info.fields.len;
        } else @compileError("invalid type given to std.mem.len"),
        else => @compileError("invalid type given to std.mem.len"),
    };
}
test "len" {
    try testing.expect(len("aoeu") == 4);
    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expect(len(&array) == 5);
        try testing.expect(len(array[0..3]) == 3);
        array[2] = 0;
        const ptr = @as([*:0]u16, array[0..2 :0]);
        try testing.expect(len(ptr) == 2);
    }
    {
        var array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expect(len(&array) == 5);
        array[2] = 0;
        try testing.expect(len(&array) == 5);
    }
    {
        const vector: meta.Vector(2, u32) = [2]u32{ 1, 2 };
        try testing.expect(len(vector) == 2);
    }
    {
        const tuple = .{ 1, 2 };
        try testing.expect(len(tuple) == 2);
        try testing.expect(tuple[0] == 1);
    }
}
pub fn indexOfSentinel(comptime Elem: type, comptime sentinel: Elem, ptr: [*:sentinel]const Elem) usize {
    var i: usize = 0;
    while (ptr[i] != sentinel) {
        i += 1;
    }
    return i;
}
pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool {
    for (slice) |item| {
        if (item != scalar) return false;
    }
    return true;
}
pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    return slice[begin..];
}
pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var end: usize = slice.len;
    while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[0..end];
}
pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    var end: usize = slice.len;
    while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[begin..end];
}
test "trim" {
    try testing.expectEqualSlices(u8, "foo\n ", trimLeft(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, " foo", trimRight(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, "foo", " \n"));
}
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    return indexOfScalarPos(T, slice, 0, value);
}
pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        if (slice[i] == value) return i;
    }
    return null;
}
pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        if (slice[i] == value) return i;
    }
    return null;
}
pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    return indexOfAnyPos(T, slice, 0, values);
}
pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;
}
pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;
}
pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    return indexOfPos(T, haystack, 0, needle);
}
pub fn lastIndexOfLinear(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    var i: usize = haystack.len - needle.len;
    while (true) : (i -= 1) {
        if (mem.eql(T, haystack[i .. i + needle.len], needle)) return i;
        if (i == 0) return null;
    }
}
pub fn indexOfPosLinear(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    var i: usize = start_index;
    const end = haystack.len - needle.len;
    while (i <= end) : (i += 1) {
        if (eql(T, haystack[i .. i + needle.len], needle)) return i;
    }
    return null;
}
fn boyerMooreHorspoolPreprocessReverse(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }
    var i: usize = pattern.len - 1;
    
    
    while (i > 0) : (i -= 1) {
        table[pattern[i]] = i;
    }
}
fn boyerMooreHorspoolPreprocess(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }
    var i: usize = 0;
    
    
    while (i < pattern.len - 1) : (i += 1) {
        table[pattern[i]] = pattern.len - 1 - i;
    }
}
pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return haystack.len;
    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return lastIndexOfLinear(T, haystack, needle);
    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);
    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocessReverse(needle_bytes, skip_table[0..]);
    var i: usize = haystack_bytes.len - needle_bytes.len;
    while (true) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        const skip = skip_table[haystack_bytes[i]];
        if (skip > i) break;
        i -= skip;
    }
    return null;
}
pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return start_index;
    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return indexOfPosLinear(T, haystack, start_index, needle);
    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);
    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocess(needle_bytes, skip_table[0..]);
    var i: usize = start_index * @sizeOf(T);
    while (i <= haystack_bytes.len - needle_bytes.len) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        i += skip_table[haystack_bytes[i + needle_bytes.len - 1]];
    }
    return null;
}
test "indexOf" {
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten", "").? == 0);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten", "").? == 48);
    try testing.expect(indexOf(u8, "one two three four", "four").? == 14);
    try testing.expect(lastIndexOf(u8, "one two three two four", "two").? == 14);
    try testing.expect(indexOf(u8, "one two three four", "gour") == null);
    try testing.expect(lastIndexOf(u8, "one two three four", "gour") == null);
    try testing.expect(indexOf(u8, "foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo", "foo").? == 0);
    try testing.expect(indexOf(u8, "foo", "fool") == null);
    try testing.expect(lastIndexOf(u8, "foo", "lfoo") == null);
    try testing.expect(lastIndexOf(u8, "foo", "fool") == null);
    try testing.expect(indexOf(u8, "foo foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo foo", "foo").? == 4);
    try testing.expect(lastIndexOfAny(u8, "boo, cat", "abo").? == 6);
    try testing.expect(lastIndexOfScalar(u8, "boo", 'o').? == 2);
}
test "indexOf multibyte" {
    {
        
        const haystack = [1]u16{0} ** 100 ++ [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff };
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needle), 100);
        
        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleBE), null);
    }
    {
        
        const haystack = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff } ++ [1]u16{0} ** 100;
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needle), 0);
        
        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleBE), null);
    }
}
test "indexOfPos empty needle" {
    try testing.expectEqual(indexOfPos(u8, "abracadabra", 5, ""), 5);
}
pub fn count(comptime T: type, haystack: []const T, needle: []const T) usize {
    assert(needle.len > 0);
    var i: usize = 0;
    var found: usize = 0;
    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
    }
    return found;
}
test "count" {
    try testing.expect(count(u8, "", "h") == 0);
    try testing.expect(count(u8, "h", "h") == 1);
    try testing.expect(count(u8, "hh", "h") == 2);
    try testing.expect(count(u8, "world!", "hello") == 0);
    try testing.expect(count(u8, "hello world!", "hello") == 1);
    try testing.expect(count(u8, "   abcabc   abc", "abc") == 3);
    try testing.expect(count(u8, "udexdcbvbruhasdrw", "bruh") == 1);
    try testing.expect(count(u8, "foo bar", "o bar") == 1);
    try testing.expect(count(u8, "foofoofoo", "foo") == 3);
    try testing.expect(count(u8, "fffffff", "ff") == 3);
    try testing.expect(count(u8, "owowowu", "owowu") == 1);
}
pub fn containsAtLeast(comptime T: type, haystack: []const T, expected_count: usize, needle: []const T) bool {
    assert(needle.len > 0);
    if (expected_count == 0) return true;
    var i: usize = 0;
    var found: usize = 0;
    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
        if (found == expected_count) return true;
    }
    return false;
}
test "containsAtLeast" {
    try testing.expect(containsAtLeast(u8, "aa", 0, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 1, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 2, "a"));
    try testing.expect(!containsAtLeast(u8, "aa", 3, "a"));
    try testing.expect(containsAtLeast(u8, "radaradar", 1, "radar"));
    try testing.expect(!containsAtLeast(u8, "radaradar", 2, "radar"));
    try testing.expect(containsAtLeast(u8, "radarradaradarradar", 3, "radar"));
    try testing.expect(!containsAtLeast(u8, "radarradaradarradar", 4, "radar"));
    try testing.expect(containsAtLeast(u8, "   radar      radar   ", 2, "radar"));
    try testing.expect(!containsAtLeast(u8, "   radar      radar   ", 3, "radar"));
}
pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: Endian) ReturnType {
    var result: ReturnType = 0;
    switch (endian) {
        .Big => {
            for (bytes) |b| {
                result = (result << 8) | b;
            }
        },
        .Little => {
            const ShiftType = math.Log2Int(ReturnType);
            for (bytes) |b, index| {
                result = result | (@as(ReturnType, b) << @intCast(ShiftType, index * 8));
            }
        },
    }
    return result;
}
pub fn readVarPackedInt(
    comptime T: type,
    bytes: []const u8,
    bit_offset: usize,
    bit_count: usize,
    endian: std.builtin.Endian,
    signedness: std.builtin.Signedness,
) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const iN = std.meta.Int(.signed, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const read_size = (bit_count + (bit_offset % 8) + 7) / 8;
    const bit_shift = @intCast(u3, bit_offset % 8);
    const pad = @intCast(Log2N, @bitSizeOf(T) - bit_count);
    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - read_size,
        .Little => bit_offset / 8,
    };
    const read_bytes = bytes[lowest_byte..][0..read_size];
    if (@bitSizeOf(T) <= 8) {
        
        
        const value = if (read_size == 1) b: {
            break :b @truncate(uN, read_bytes[0] >> bit_shift);
        } else b: {
            const i: u1 = @boolToInt(endian == .Big);
            const head = @truncate(uN, read_bytes[i] >> bit_shift);
            const tail_shift = @intCast(Log2N, @as(u4, 8) - bit_shift);
            const tail = @truncate(uN, read_bytes[1 - i]);
            break :b (tail << tail_shift) | head;
        };
        switch (signedness) {
            .signed => return @intCast(T, (@bitCast(iN, value) << pad) >> pad),
            .unsigned => return @intCast(T, (@bitCast(uN, value) << pad) >> pad),
        }
    }
    
    var int: uN = 0;
    switch (endian) {
        .Big => {
            for (read_bytes[0 .. read_size - 1]) |elem| {
                int = elem | (int << 8);
            }
            int = (read_bytes[read_size - 1] >> bit_shift) | (int << (@as(u4, 8) - bit_shift));
        },
        .Little => {
            int = read_bytes[0] >> bit_shift;
            for (read_bytes[1..]) |elem, i| {
                int |= (@as(uN, elem) << @intCast(Log2N, (8 * (i + 1) - bit_shift)));
            }
        },
    }
    switch (signedness) {
        .signed => return @intCast(T, (@bitCast(iN, int) << pad) >> pad),
        .unsigned => return @intCast(T, (@bitCast(uN, int) << pad) >> pad),
    }
}
pub fn readIntNative(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @ptrCast(*align(1) const T, bytes).*;
}
pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @byteSwap(readIntNative(T, bytes));
}
pub const readIntLittle = switch (native_endian) {
    .Little => readIntNative,
    .Big => readIntForeign,
};
pub const readIntBig = switch (native_endian) {
    .Little => readIntForeign,
    .Big => readIntNative,
};
pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readIntNative(T, bytes[0..n]);
}
pub fn readIntSliceForeign(comptime T: type, bytes: []const u8) T {
    return @byteSwap(readIntSliceNative(T, bytes));
}
pub const readIntSliceLittle = switch (native_endian) {
    .Little => readIntSliceNative,
    .Big => readIntSliceForeign,
};
pub const readIntSliceBig = switch (native_endian) {
    .Little => readIntSliceForeign,
    .Big => readIntSliceNative,
};
pub fn readInt(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8, endian: Endian) T {
    if (endian == native_endian) {
        return readIntNative(T, bytes);
    } else {
        return readIntForeign(T, bytes);
    }
}
fn readPackedIntLittle(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @intCast(u3, (load_size * 8) - bit_count);
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);
    if (bit_count == 0)
        return 0;
    
    
    const read_bytes = bytes[bit_offset / 8 ..];
    const val = @truncate(uN, readIntLittle(LoadInt, read_bytes[0..load_size]) >> bit_shift);
    if (bit_shift > load_tail_bits) {
        const tail_bits = @intCast(Log2N, bit_shift - load_tail_bits);
        const tail_byte = read_bytes[load_size];
        const tail_truncated = if (bit_count < 8) @truncate(uN, tail_byte) else @as(uN, tail_byte);
        return @bitCast(T, val | (tail_truncated << (@truncate(Log2N, bit_count) -% tail_bits)));
    } else return @bitCast(T, val);
}
fn readPackedIntBig(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const byte_count = (@as(usize, bit_shift) + bit_count + 7) / 8;
    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @intCast(u3, (load_size * 8) - bit_count);
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);
    if (bit_count == 0)
        return 0;
    
    
    const end = bytes.len - (bit_offset / 8);
    const read_bytes = bytes[(end - byte_count)..end];
    const val = @truncate(uN, readIntBig(LoadInt, bytes[(end - load_size)..end][0..load_size]) >> bit_shift);
    if (bit_shift > load_tail_bits) {
        const tail_bits = @intCast(Log2N, bit_shift - load_tail_bits);
        const tail_byte = if (bit_count < 8) @truncate(uN, read_bytes[0]) else @as(uN, read_bytes[0]);
        return @bitCast(T, val | (tail_byte << (@truncate(Log2N, bit_count) -% tail_bits)));
    } else return @bitCast(T, val);
}
pub const readPackedIntNative = switch (native_endian) {
    .Little => readPackedIntLittle,
    .Big => readPackedIntBig,
};
pub const readPackedIntForeign = switch (native_endian) {
    .Little => readPackedIntBig,
    .Big => readPackedIntLittle,
};
pub fn readPackedInt(comptime T: type, bytes: []const u8, bit_offset: usize, endian: Endian) T {
    switch (endian) {
        .Little => return readPackedIntLittle(T, bytes, bit_offset),
        .Big => return readPackedIntBig(T, bytes, bit_offset),
    }
}
pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: Endian) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readInt(T, bytes[0..n], endian);
}
test "comptime read/write int" {
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntLittle(u16, &bytes, 0x1234);
        const result = readIntBig(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntBig(u16, &bytes, 0x1234);
        const result = readIntLittle(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
}
test "readIntBig and readIntLittle" {
    try testing.expect(readIntSliceBig(u0, &[_]u8{}) == 0x0);
    try testing.expect(readIntSliceLittle(u0, &[_]u8{}) == 0x0);
    try testing.expect(readIntSliceBig(u8, &[_]u8{0x32}) == 0x32);
    try testing.expect(readIntSliceLittle(u8, &[_]u8{0x12}) == 0x12);
    try testing.expect(readIntSliceBig(u16, &[_]u8{ 0x12, 0x34 }) == 0x1234);
    try testing.expect(readIntSliceLittle(u16, &[_]u8{ 0x12, 0x34 }) == 0x3412);
    try testing.expect(readIntSliceBig(u72, &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024);
    try testing.expect(readIntSliceLittle(u72, &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec);
    try testing.expect(readIntSliceBig(i8, &[_]u8{0xff}) == -1);
    try testing.expect(readIntSliceLittle(i8, &[_]u8{0xfe}) == -2);
    try testing.expect(readIntSliceBig(i16, &[_]u8{ 0xff, 0xfd }) == -3);
    try testing.expect(readIntSliceLittle(i16, &[_]u8{ 0xfc, 0xff }) == -4);
}
pub fn writeIntNative(comptime T: type, buf: *[(@typeInfo(T).Int.bits + 7) / 8]u8, value: T) void {
    @ptrCast(*align(1) T, buf).* = value;
}
pub fn writeIntForeign(comptime T: type, buf: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T) void {
    writeIntNative(T, buf, @byteSwap(value));
}
pub const writeIntLittle = switch (native_endian) {
    .Little => writeIntNative,
    .Big => writeIntForeign,
};
pub const writeIntBig = switch (native_endian) {
    .Little => writeIntForeign,
    .Big => writeIntNative,
};
pub fn writeInt(comptime T: type, buffer: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T, endian: Endian) void {
    if (endian == native_endian) {
        return writeIntNative(T, buffer, value);
    } else {
        return writeIntForeign(T, buffer, value);
    }
}
pub fn writePackedIntLittle(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @intCast(u3, (store_size * 8) - bit_count);
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);
    if (bit_count == 0)
        return;
    
    
    const write_bytes = bytes[bit_offset / 8 ..];
    const head = write_bytes[0] & ((@as(u8, 1) << bit_shift) - 1);
    var write_value = (@as(StoreInt, @bitCast(uN, value)) << bit_shift) | @intCast(StoreInt, head);
    if (bit_shift > store_tail_bits) {
        const tail_len = @intCast(Log2N, bit_shift - store_tail_bits);
        write_bytes[store_size] &= ~((@as(u8, 1) << @intCast(u3, tail_len)) - 1);
        write_bytes[store_size] |= @intCast(u8, (@bitCast(uN, value) >> (@truncate(Log2N, bit_count) -% tail_len)));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[store_size - 1] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }
    writeIntLittle(StoreInt, write_bytes[0..store_size], write_value);
}
pub fn writePackedIntBig(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const byte_count = (bit_shift + bit_count + 7) / 8;
    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @intCast(u3, (store_size * 8) - bit_count);
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);
    if (bit_count == 0)
        return;
    
    
    const end = bytes.len - (bit_offset / 8);
    const write_bytes = bytes[(end - byte_count)..end];
    const head = write_bytes[byte_count - 1] & ((@as(u8, 1) << bit_shift) - 1);
    var write_value = (@as(StoreInt, @bitCast(uN, value)) << bit_shift) | @intCast(StoreInt, head);
    if (bit_shift > store_tail_bits) {
        const tail_len = @intCast(Log2N, bit_shift - store_tail_bits);
        write_bytes[0] &= ~((@as(u8, 1) << @intCast(u3, tail_len)) - 1);
        write_bytes[0] |= @intCast(u8, (@bitCast(uN, value) >> (@truncate(Log2N, bit_count) -% tail_len)));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[0] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }
    writeIntBig(StoreInt, write_bytes[(byte_count - store_size)..][0..store_size], write_value);
}
pub const writePackedIntNative = switch (native_endian) {
    .Little => writePackedIntLittle,
    .Big => writePackedIntBig,
};
pub const writePackedIntForeign = switch (native_endian) {
    .Little => writePackedIntBig,
    .Big => writePackedIntLittle,
};
pub fn writePackedInt(comptime T: type, bytes: []u8, bit_offset: usize, value: T, endian: Endian) void {
    switch (endian) {
        .Little => writePackedIntLittle(T, bytes, bit_offset, value),
        .Big => writePackedIntBig(T, bytes, bit_offset, value),
    }
}
pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));
    if (@typeInfo(T).Int.bits == 0) {
        return set(u8, buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        set(u8, buffer, 0);
        buffer[0] = @bitCast(u8, value);
        return;
    }
    
    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @bitCast(uint, value);
    for (buffer) |*b| {
        b.* = @truncate(u8, bits);
        bits >>= 8;
    }
}
pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));
    if (@typeInfo(T).Int.bits == 0) {
        return set(u8, buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        set(u8, buffer, 0);
        buffer[buffer.len - 1] = @bitCast(u8, value);
        return;
    }
    
    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @bitCast(uint, value);
    var index: usize = buffer.len;
    while (index != 0) {
        index -= 1;
        buffer[index] = @truncate(u8, bits);
        bits >>= 8;
    }
}
pub const writeIntSliceNative = switch (native_endian) {
    .Little => writeIntSliceLittle,
    .Big => writeIntSliceBig,
};
pub const writeIntSliceForeign = switch (native_endian) {
    .Little => writeIntSliceBig,
    .Big => writeIntSliceLittle,
};
pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: Endian) void {
    comptime assert(@typeInfo(T).Int.bits % 8 == 0);
    return switch (endian) {
        .Little => writeIntSliceLittle(T, buffer, value),
        .Big => writeIntSliceBig(T, buffer, value),
    };
}
pub fn writeVarPackedInt(bytes: []u8, bit_offset: usize, bit_count: usize, value: anytype, endian: std.builtin.Endian) void {
    const T = @TypeOf(value);
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);
    const bit_shift = @intCast(u3, bit_offset % 8);
    const write_size = (bit_count + bit_shift + 7) / 8;
    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - write_size,
        .Little => bit_offset / 8,
    };
    const write_bytes = bytes[lowest_byte..][0..write_size];
    if (write_size == 1) {
        
        
        const mask = (@as(u8, 0xff) >> @intCast(u3, 8 - bit_count));
        const new_bits = @intCast(u8, @bitCast(uN, value) & mask) << bit_shift;
        write_bytes[0] = (write_bytes[0] & ~(mask << bit_shift)) | new_bits;
        return;
    }
    var remaining: T = value;
    
    const delta: i2 = if (endian == .Big) -1 else 1;
    const start = if (endian == .Big) @intCast(isize, write_bytes.len - 1) else 0;
    var i: isize = start; 
    
    const head_mask = @as(u8, 0xff) >> bit_shift;
    write_bytes[@intCast(usize, i)] &= ~(head_mask << bit_shift);
    write_bytes[@intCast(usize, i)] |= @intCast(u8, @bitCast(uN, remaining) & head_mask) << bit_shift;
    remaining >>= @intCast(Log2N, @as(u4, 8) - bit_shift);
    i += delta;
    
    if (@bitSizeOf(T) > 8) {
        const loop_end = start + delta * (@intCast(isize, write_size) - 1);
        while (i != loop_end) : (i += delta) {
            write_bytes[@intCast(usize, i)] = @truncate(u8, @bitCast(uN, remaining));
            remaining >>= 8;
        }
    }
    
    const following_bits = -%@truncate(u3, bit_shift + bit_count);
    const tail_mask = (@as(u8, 0xff) << following_bits) >> following_bits;
    write_bytes[@intCast(usize, i)] &= ~tail_mask;
    write_bytes[@intCast(usize, i)] |= @intCast(u8, @bitCast(uN, remaining) & tail_mask);
}
test "writeIntBig and writeIntLittle" {
    var buf0: [0]u8 = undefined;
    var buf1: [1]u8 = undefined;
    var buf2: [2]u8 = undefined;
    var buf9: [9]u8 = undefined;
    writeIntBig(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));
    writeIntLittle(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));
    writeIntBig(u8, &buf1, 0x12);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x12}));
    writeIntLittle(u8, &buf1, 0x34);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x34}));
    writeIntBig(u16, &buf2, 0x1234);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x12, 0x34 }));
    writeIntLittle(u16, &buf2, 0x5678);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x78, 0x56 }));
    writeIntBig(u72, &buf9, 0x123456789abcdef024);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }));
    writeIntLittle(u72, &buf9, 0xfedcba9876543210ec);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }));
    writeIntBig(i8, &buf1, -1);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xff}));
    writeIntLittle(i8, &buf1, -2);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xfe}));
    writeIntBig(i16, &buf2, -3);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xff, 0xfd }));
    writeIntLittle(i16, &buf2, -4);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xfc, 0xff }));
}
pub fn byteSwapAllFields(comptime S: type, ptr: *S) void {
    if (@typeInfo(S) != .Struct) @compileError("byteSwapAllFields expects a struct as the first argument");
    inline for (std.meta.fields(S)) |f| {
        @field(ptr, f.name) = @byteSwap(@field(ptr, f.name));
    }
}
test "byteSwapAllFields" {
    const T = extern struct {
        f0: u8,
        f1: u16,
        f2: u32,
    };
    var s = T{
        .f0 = 0x12,
        .f1 = 0x1234,
        .f2 = 0x12345678,
    };
    byteSwapAllFields(T, &s);
    try std.testing.expectEqual(T{
        .f0 = 0x12,
        .f1 = 0x3412,
        .f2 = 0x78563412,
    }, s);
}
pub fn tokenize(comptime T: type, buffer: []const T, delimiter_bytes: []const T) TokenIterator(T) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter_bytes = delimiter_bytes,
    };
}
test "tokenize" {
    var it = tokenize(u8, "   abc def   ghi  ", " ");
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.peek().?, "def"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);
    it = tokenize(u8, "..\\bob", "\\");
    try testing.expect(eql(u8, it.next().?, ".."));
    try testing.expect(eql(u8, "..", "..\\bob"[0..it.index]));
    try testing.expect(eql(u8, it.next().?, "bob"));
    try testing.expect(it.next() == null);
    it = tokenize(u8, "//a/b", "/");
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, "//a/b", "//a/b"[0..it.index]));
    try testing.expect(it.next() == null);
    it = tokenize(u8, "|", "|");
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);
    it = tokenize(u8, "", "|");
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);
    it = tokenize(u8, "hello", "");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);
    it = tokenize(u8, "hello", " ");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);
    var it16 = tokenize(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("hello")));
    try testing.expect(it16.next() == null);
}
test "tokenize (multibyte)" {
    var it = tokenize(u8, "a|b,c/d e", " /,|");
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.peek().?, "b"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, it.next().?, "c"));
    try testing.expect(eql(u8, it.next().?, "d"));
    try testing.expect(eql(u8, it.next().?, "e"));
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);
    var it16 = tokenize(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a|b,c/d e"),
        std.unicode.utf8ToUtf16LeStringLiteral(" /,|"),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e")));
    try testing.expect(it16.next() == null);
}
test "tokenize (reset)" {
    var it = tokenize(u8, "   abc def   ghi  ", " ");
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    it.reset();
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);
}
pub fn split(comptime T: type, buffer: []const T, delimiter: []const T) SplitIterator(T) {
    assert(delimiter.len != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}
test "split" {
    var it = split(u8, "abc|def||ghi", "|");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "abc");
    try testing.expectEqualSlices(u8, it.rest(), "def||ghi");
    try testing.expectEqualSlices(u8, it.next().?, "def");
    try testing.expectEqualSlices(u8, it.rest(), "|ghi");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expectEqualSlices(u8, it.rest(), "ghi");
    try testing.expectEqualSlices(u8, it.next().?, "ghi");
    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);
    it = split(u8, "", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);
    it = split(u8, "|", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.next() == null);
    it = split(u8, "hello", " ");
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);
    var it16 = split(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}
test "split (multibyte)" {
    var it = split(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.first(), "a");
    try testing.expectEqualSlices(u8, it.rest(), "b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");
    try testing.expectEqualSlices(u8, it.next().?, "c");
    try testing.expectEqualSlices(u8, it.next().?, "d");
    try testing.expectEqualSlices(u8, it.next().?, "e");
    try testing.expect(it.next() == null);
    var it16 = split(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expect(it16.next() == null);
}
test "split (reset)" {
    var it = split(u8, "abc def ghi", " ");
    try testing.expect(eql(u8, it.first(), "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    it.reset();
    try testing.expect(eql(u8, it.first(), "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);
}
pub fn splitBackwards(comptime T: type, buffer: []const T, delimiter: []const T) SplitBackwardsIterator(T) {
    assert(delimiter.len != 0);
    return SplitBackwardsIterator(T){
        .index = buffer.len,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}
test "splitBackwards" {
    var it = splitBackwards(u8, "abc|def||ghi", "|");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "ghi");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def|");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def");
    try testing.expectEqualSlices(u8, it.next().?, "def");
    try testing.expectEqualSlices(u8, it.rest(), "abc");
    try testing.expectEqualSlices(u8, it.next().?, "abc");
    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);
    it = splitBackwards(u8, "", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);
    it = splitBackwards(u8, "|", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.next() == null);
    it = splitBackwards(u8, "hello", " ");
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);
    var it16 = splitBackwards(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}
test "splitBackwards (multibyte)" {
    var it = splitBackwards(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.first(), "e");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d");
    try testing.expectEqualSlices(u8, it.next().?, "d");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c");
    try testing.expectEqualSlices(u8, it.next().?, "c");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");
    try testing.expectEqualSlices(u8, it.rest(), "a");
    try testing.expectEqualSlices(u8, it.next().?, "a");
    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);
    var it16 = splitBackwards(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expect(it16.next() == null);
}
test "splitBackwards (reset)" {
    var it = splitBackwards(u8, "abc def ghi", " ");
    try testing.expect(eql(u8, it.first(), "ghi"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "abc"));
    it.reset();
    try testing.expect(eql(u8, it.first(), "ghi"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(it.next() == null);
}
pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle);
}
test "startsWith" {
    try testing.expect(startsWith(u8, "Bob", "Bo"));
    try testing.expect(!startsWith(u8, "Needle in haystack", "haystack"));
}
pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len ..], needle);
}
test "endsWith" {
    try testing.expect(endsWith(u8, "Needle in haystack", "haystack"));
    try testing.expect(!endsWith(u8, "Bob", "Bo"));
}
pub fn TokenIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        delimiter_bytes: []const T,
        index: usize,
        const Self = @This();
        
        
        pub fn next(self: *Self) ?[]const T {
            const result = self.peek() orelse return null;
            self.index += result.len;
            return result;
        }
        
        
        pub fn peek(self: *Self) ?[]const T {
            
            while (self.index < self.buffer.len and self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {}
            const start = self.index;
            if (start == self.buffer.len) {
                return null;
            }
            
            var end = start;
            while (end < self.buffer.len and !self.isSplitByte(self.buffer[end])) : (end += 1) {}
            return self.buffer[start..end];
        }
        
        pub fn rest(self: Self) []const T {
            
            var index: usize = self.index;
            while (index < self.buffer.len and self.isSplitByte(self.buffer[index])) : (index += 1) {}
            return self.buffer[index..];
        }
        
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
        fn isSplitByte(self: Self, byte: T) bool {
            for (self.delimiter_bytes) |delimiter_byte| {
                if (byte == delimiter_byte) {
                    return true;
                }
            }
            return false;
        }
    };
}
pub fn SplitIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: []const T,
        const Self = @This();
        
        
        pub fn first(self: *Self) []const T {
            assert(self.index.? == 0);
            return self.next().?;
        }
        
        pub fn next(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const end = if (indexOfPos(T, self.buffer, start, self.delimiter)) |delim_start| blk: {
                self.index = delim_start + self.delimiter.len;
                break :blk delim_start;
            } else blk: {
                self.index = null;
                break :blk self.buffer.len;
            };
            return self.buffer[start..end];
        }
        
        pub fn rest(self: Self) []const T {
            const end = self.buffer.len;
            const start = self.index orelse end;
            return self.buffer[start..end];
        }
        
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
    };
}
pub fn SplitBackwardsIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: []const T,
        const Self = @This();
        
        
        pub fn first(self: *Self) []const T {
            assert(self.index.? == self.buffer.len);
            return self.next().?;
        }
        
        pub fn next(self: *Self) ?[]const T {
            const end = self.index orelse return null;
            const start = if (lastIndexOf(T, self.buffer[0..end], self.delimiter)) |delim_start| blk: {
                self.index = delim_start;
                break :blk delim_start + self.delimiter.len;
            } else blk: {
                self.index = null;
                break :blk 0;
            };
            return self.buffer[start..end];
        }
        
        pub fn rest(self: Self) []const T {
            const end = self.index orelse 0;
            return self.buffer[0..end];
        }
        
        pub fn reset(self: *Self) void {
            self.index = self.buffer.len;
        }
    };
}
pub fn join(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![]u8 {
    return joinMaybeZ(allocator, separator, slices, false);
}
pub fn joinZ(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![:0]u8 {
    const out = try joinMaybeZ(allocator, separator, slices, true);
    return out[0 .. out.len - 1 :0];
}
fn joinMaybeZ(allocator: Allocator, separator: []const u8, slices: []const []const u8, zero: bool) ![]u8 {
    if (slices.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};
    const total_len = blk: {
        var sum: usize = separator.len * (slices.len - 1);
        for (slices) |slice| sum += slice.len;
        if (zero) sum += 1;
        break :blk sum;
    };
    const buf = try allocator.alloc(u8, total_len);
    errdefer allocator.free(buf);
    copy(u8, buf, slices[0]);
    var buf_index: usize = slices[0].len;
    for (slices[1..]) |slice| {
        copy(u8, buf[buf_index..], separator);
        buf_index += separator.len;
        copy(u8, buf[buf_index..], slice);
        buf_index += slice.len;
    }
    if (zero) buf[buf.len - 1] = 0;
    
    return buf;
}
test "join" {
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
    }
}
test "joinZ" {
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
        try testing.expectEqual(str[str.len], 0);
    }
}
pub fn concat(allocator: Allocator, comptime T: type, slices: []const []const T) ![]T {
    return concatMaybeSentinel(allocator, T, slices, null);
}
pub fn concatWithSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: T) ![:s]T {
    const ret = try concatMaybeSentinel(allocator, T, slices, s);
    return ret[0 .. ret.len - 1 :s];
}
pub fn concatMaybeSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: ?T) ![]T {
    if (slices.len == 0) return if (s) |sentinel| try allocator.dupe(T, &[1]T{sentinel}) else &[0]T{};
    const total_len = blk: {
        var sum: usize = 0;
        for (slices) |slice| {
            sum += slice.len;
        }
        if (s) |_| {
            sum += 1;
        }
        break :blk sum;
    };
    const buf = try allocator.alloc(T, total_len);
    errdefer allocator.free(buf);
    var buf_index: usize = 0;
    for (slices) |slice| {
        copy(T, buf[buf_index..], slice);
        buf_index += slice.len;
    }
    if (s) |sentinel| {
        buf[buf.len - 1] = sentinel;
    }
    
    return buf;
}
test "concat" {
    {
        const str = try concat(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "abcdefghi"));
    }
    {
        const str = try concat(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        });
        defer testing.allocator.free(str);
        try testing.expect(eql(u32, str, &[_]u32{ 0, 1, 2, 3, 4, 5 }));
    }
    {
        const str = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" }, 0);
        defer testing.allocator.free(str);
        try testing.expectEqualSentinel(u8, 0, str, "abcdefghi");
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{}, 0);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u8, 0, slice, &[_:0]u8{});
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        }, 2);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u32, 2, slice, &[_:2]u32{ 0, 1, 2, 3, 4, 5 });
    }
}
test "testStringEquality" {
    try testing.expect(eql(u8, "abcd", "abcd"));
    try testing.expect(!eql(u8, "abcdef", "abZdef"));
    try testing.expect(!eql(u8, "abcdefg", "abcdef"));
}
test "testReadInt" {
    try testReadIntImpl();
    comptime try testReadIntImpl();
}
fn testReadIntImpl() !void {
    {
        const bytes = [_]u8{
            0x12,
            0x34,
            0x56,
            0x78,
        };
        try testing.expect(readInt(u32, &bytes, Endian.Big) == 0x12345678);
        try testing.expect(readIntBig(u32, &bytes) == 0x12345678);
        try testing.expect(readIntBig(i32, &bytes) == 0x12345678);
        try testing.expect(readInt(u32, &bytes, Endian.Little) == 0x78563412);
        try testing.expect(readIntLittle(u32, &bytes) == 0x78563412);
        try testing.expect(readIntLittle(i32, &bytes) == 0x78563412);
    }
    {
        const buf = [_]u8{
            0x00,
            0x00,
            0x12,
            0x34,
        };
        const answer = readInt(u32, &buf, Endian.Big);
        try testing.expect(answer == 0x00001234);
    }
    {
        const buf = [_]u8{
            0x12,
            0x34,
            0x00,
            0x00,
        };
        const answer = readInt(u32, &buf, Endian.Little);
        try testing.expect(answer == 0x00003412);
    }
    {
        const bytes = [_]u8{
            0xff,
            0xfe,
        };
        try testing.expect(readIntBig(u16, &bytes) == 0xfffe);
        try testing.expect(readIntBig(i16, &bytes) == -0x0002);
        try testing.expect(readIntLittle(u16, &bytes) == 0xfeff);
        try testing.expect(readIntLittle(i16, &bytes) == -0x0101);
    }
}
test "writeIntSlice" {
    try testWriteIntImpl();
    comptime try testWriteIntImpl();
}
fn testWriteIntImpl() !void {
    var bytes: [8]u8 = undefined;
    writeIntSlice(u0, bytes[0..], 0, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
    writeIntSlice(u0, bytes[0..], 0, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
    writeIntSlice(u64, bytes[0..], 0x12345678CAFEBABE, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));
    writeIntSlice(u64, bytes[0..], 0xBEBAFECA78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));
    writeIntSlice(u32, bytes[0..], 0x12345678, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
        0x56,
        0x78,
    }));
    writeIntSlice(u32, bytes[0..], 0x78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0x00,
        0x00,
        0x00,
        0x00,
    }));
    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
    }));
    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x34,
        0x12,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));
    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xCD,
        0xAB,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));
    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0xAB,
        0xCD,
    }));
    writeIntSlice(u8, bytes[0..], 0x12, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x12,
    }));
    writeIntSlice(u8, bytes[0..], 0x12, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
    writeIntSlice(i8, bytes[0..], -1, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0xff,
    }));
    writeIntSlice(i8, bytes[0..], -1, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xff, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
}
pub fn min(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = math.min(best, item);
    }
    return best;
}
test "min" {
    try testing.expectEqual(min(u8, "abcdefg"), 'a');
    try testing.expectEqual(min(u8, "bcdefga"), 'a');
    try testing.expectEqual(min(u8, "a"), 'a');
}
pub fn max(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = math.max(best, item);
    }
    return best;
}
test "max" {
    try testing.expectEqual(max(u8, "abcdefg"), 'g');
    try testing.expectEqual(max(u8, "gabcdef"), 'g');
    try testing.expectEqual(max(u8, "g"), 'g');
}
pub fn minMax(comptime T: type, slice: []const T) struct { min: T, max: T } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    for (slice[1..]) |item| {
        minVal = math.min(minVal, item);
        maxVal = math.max(maxVal, item);
    }
    return .{ .min = minVal, .max = maxVal };
}
test "minMax" {
    try testing.expectEqual(minMax(u8, "abcdefg"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "bcdefga"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "a"), .{ .min = 'a', .max = 'a' });
}
pub fn indexOfMin(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..]) |item, i| {
        if (item < best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}
test "indexOfMin" {
    try testing.expectEqual(indexOfMin(u8, "abcdefg"), 0);
    try testing.expectEqual(indexOfMin(u8, "bcdefga"), 6);
    try testing.expectEqual(indexOfMin(u8, "a"), 0);
}
pub fn indexOfMax(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..]) |item, i| {
        if (item > best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}
test "indexOfMax" {
    try testing.expectEqual(indexOfMax(u8, "abcdefg"), 6);
    try testing.expectEqual(indexOfMax(u8, "gabcdef"), 0);
    try testing.expectEqual(indexOfMax(u8, "a"), 0);
}
pub fn indexOfMinMax(comptime T: type, slice: []const T) struct { index_min: usize, index_max: usize } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    var minIdx: usize = 0;
    var maxIdx: usize = 0;
    for (slice[1..]) |item, i| {
        if (item < minVal) {
            minVal = item;
            minIdx = i + 1;
        }
        if (item > maxVal) {
            maxVal = item;
            maxIdx = i + 1;
        }
    }
    return .{ .index_min = minIdx, .index_max = maxIdx };
}
test "indexOfMinMax" {
    try testing.expectEqual(indexOfMinMax(u8, "abcdefg"), .{ .index_min = 0, .index_max = 6 });
    try testing.expectEqual(indexOfMinMax(u8, "gabcdef"), .{ .index_min = 1, .index_max = 0 });
    try testing.expectEqual(indexOfMinMax(u8, "a"), .{ .index_min = 0, .index_max = 0 });
}
pub fn swap(comptime T: type, a: *T, b: *T) void {
    const tmp = a.*;
    a.* = b.*;
    b.* = tmp;
}
pub fn reverse(comptime T: type, items: []T) void {
    var i: usize = 0;
    const end = items.len / 2;
    while (i < end) : (i += 1) {
        swap(T, &items[i], &items[items.len - i - 1]);
    }
}
test "reverse" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    reverse(i32, arr[0..]);
    try testing.expect(eql(i32, &arr, &[_]i32{ 4, 2, 1, 3, 5 }));
}
pub fn rotate(comptime T: type, items: []T, amount: usize) void {
    reverse(T, items[0..amount]);
    reverse(T, items[amount..]);
    reverse(T, items);
}
test "rotate" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    rotate(i32, arr[0..], 2);
    try testing.expect(eql(i32, &arr, &[_]i32{ 1, 2, 4, 5, 3 }));
}
pub fn replace(comptime T: type, input: []const T, needle: []const T, replacement: []const T, output: []T) usize {
    
    assert(needle.len > 0);
    var i: usize = 0;
    var slide: usize = 0;
    var replacements: usize = 0;
    while (slide < input.len) {
        if (mem.startsWith(T, input[slide..], needle)) {
            mem.copy(T, output[i .. i + replacement.len], replacement);
            i += replacement.len;
            slide += needle.len;
            replacements += 1;
        } else {
            output[i] = input[slide];
            i += 1;
            slide += 1;
        }
    }
    return replacements;
}
test "replace" {
    var output: [29]u8 = undefined;
    var replacements = replace(u8, "All your base are belong to us", "base", "Zig", output[0..]);
    var expected: []const u8 = "All your Zig are belong to us";
    try testing.expect(replacements == 1);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
    replacements = replace(u8, "Favor reading code over writing code.", "code", "", output[0..]);
    expected = "Favor reading  over writing .";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
    
    replacements = replace(u8, "", "x", "y", output[0..0]);
    expected = "";
    try testing.expect(replacements == 0);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
    
    replacements = replace(u8, "\\n\\n", "\\n", "\n", output[0..]);
    expected = "\n\n";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
    replacements = replace(u8, "abbba", "b", "cd", output[0..]);
    expected = "acdcdcda";
    try testing.expect(replacements == 3);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
}
pub fn replaceScalar(comptime T: type, slice: []T, needle: T, replacement: T) void {
    for (slice) |e, i| {
        if (e == needle) {
            slice[i] = replacement;
        }
    }
}
pub fn collapseRepeatsLen(comptime T: type, slice: []T, elem: T) usize {
    if (slice.len == 0) return 0;
    var write_idx: usize = 1;
    var read_idx: usize = 1;
    while (read_idx < slice.len) : (read_idx += 1) {
        if (slice[read_idx - 1] != elem or slice[read_idx] != elem) {
            slice[write_idx] = slice[read_idx];
            write_idx += 1;
        }
    }
    return write_idx;
}
pub fn collapseRepeats(comptime T: type, slice: []T, elem: T) []T {
    return slice[0..collapseRepeatsLen(T, slice, elem)];
}
fn testCollapseRepeats(str: []const u8, elem: u8, expected: []const u8) !void {
    const mutable = try std.testing.allocator.dupe(u8, str);
    defer std.testing.allocator.free(mutable);
    try testing.expect(std.mem.eql(u8, collapseRepeats(u8, mutable, elem), expected));
}
test "collapseRepeats" {
    try testCollapseRepeats("", '/', "");
    try testCollapseRepeats("a", '/', "a");
    try testCollapseRepeats("/", '/', "/");
    try testCollapseRepeats("//", '/', "/");
    try testCollapseRepeats("/a", '/', "/a");
    try testCollapseRepeats("//a", '/', "/a");
    try testCollapseRepeats("a/", '/', "a/");
    try testCollapseRepeats("a//", '/', "a/");
    try testCollapseRepeats("a/a", '/', "a/a");
    try testCollapseRepeats("a//a", '/', "a/a");
    try testCollapseRepeats("//a///a////", '/', "/a/a/");
}
pub fn replacementSize(comptime T: type, input: []const T, needle: []const T, replacement: []const T) usize {
    
    assert(needle.len > 0);
    var i: usize = 0;
    var size: usize = input.len;
    while (i < input.len) {
        if (mem.startsWith(T, input[i..], needle)) {
            size = size - needle.len + replacement.len;
            i += needle.len;
        } else {
            i += 1;
        }
    }
    return size;
}
test "replacementSize" {
    try testing.expect(replacementSize(u8, "All your base are belong to us", "base", "Zig") == 29);
    try testing.expect(replacementSize(u8, "Favor reading code over writing code.", "code", "") == 29);
    try testing.expect(replacementSize(u8, "Only one obvious way to do things.", "things.", "things in Zig.") == 41);
    
    try testing.expect(replacementSize(u8, "", "x", "y") == 0);
    
    try testing.expect(replacementSize(u8, "\\n\\n", "\\n", "\n") == 2);
    try testing.expect(replacementSize(u8, "abbba", "b", "cd") == 8);
}
pub fn replaceOwned(comptime T: type, allocator: Allocator, input: []const T, needle: []const T, replacement: []const T) Allocator.Error![]T {
    var output = try allocator.alloc(T, replacementSize(T, input, needle, replacement));
    _ = replace(T, input, needle, replacement, output);
    return output;
}
test "replaceOwned" {
    const gpa = std.testing.allocator;
    const base_replace = replaceOwned(u8, gpa, "All your base are belong to us", "base", "Zig") catch @panic("out of memory");
    defer gpa.free(base_replace);
    try testing.expect(eql(u8, base_replace, "All your Zig are belong to us"));
    const zen_replace = replaceOwned(u8, gpa, "Favor reading code over writing code.", " code", "") catch @panic("out of memory");
    defer gpa.free(zen_replace);
    try testing.expect(eql(u8, zen_replace, "Favor reading over writing."));
}
pub fn littleToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}
pub fn bigToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}
pub fn toNative(comptime T: type, x: T, endianness_of_x: Endian) T {
    return switch (endianness_of_x) {
        .Little => littleToNative(T, x),
        .Big => bigToNative(T, x),
    };
}
pub fn nativeTo(comptime T: type, x: T, desired_endianness: Endian) T {
    return switch (desired_endianness) {
        .Little => nativeToLittle(T, x),
        .Big => nativeToBig(T, x),
    };
}
pub fn nativeToLittle(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}
pub fn nativeToBig(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}
pub fn alignPointerOffset(ptr: anytype, align_to: u29) ?usize {
    assert(align_to != 0 and @popCount(align_to) == 1);
    const T = @TypeOf(ptr);
    const info = @typeInfo(T);
    if (info != .Pointer or info.Pointer.size != .Many)
        @compileError("expected many item pointer, got " ++ @typeName(T));
    
    if (align_to <= info.Pointer.alignment)
        return 0;
    
    const addr = @ptrToInt(ptr);
    var new_addr: usize = undefined;
    if (@addWithOverflow(usize, addr, align_to - 1, &new_addr)) return null;
    new_addr &= ~@as(usize, align_to - 1);
    
    
    const delta = new_addr - addr;
    const pointee_size = @sizeOf(info.Pointer.child);
    if (delta % pointee_size != 0) return null;
    return delta / pointee_size;
}
pub fn alignPointer(ptr: anytype, align_to: u29) ?@TypeOf(ptr) {
    const adjust_off = alignPointerOffset(ptr, align_to) orelse return null;
    const T = @TypeOf(ptr);
    
    return @alignCast(@typeInfo(T).Pointer.alignment, ptr + adjust_off);
}
test "alignPointer" {
    const S = struct {
        fn checkAlign(comptime T: type, base: usize, align_to: u29, expected: usize) !void {
            var ptr = @intToPtr(T, base);
            var aligned = alignPointer(ptr, align_to);
            try testing.expectEqual(expected, @ptrToInt(aligned));
        }
    };
    try S.checkAlign([*]u8, 0x123, 0x200, 0x200);
    try S.checkAlign([*]align(4) u8, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x4, 16, 0x10);
    
    try S.checkAlign([*]align(1) u32, 0x3, 2, 0);
    
    try S.checkAlign([*]u32, math.maxInt(usize) - 3, 8, 0);
}
fn CopyPtrAttrs(
    comptime source: type,
    comptime size: std.builtin.Type.Pointer.Size,
    comptime child: type,
) type {
    const info = @typeInfo(source).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = size,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = info.alignment,
            .address_space = info.address_space,
            .child = child,
            .sentinel = null,
        },
    });
}
fn AsBytesReturnType(comptime P: type) type {
    if (!trait.isSingleItemPtr(P))
        @compileError("expected single item pointer, passed " ++ @typeName(P));
    const size = @sizeOf(meta.Child(P));
    return CopyPtrAttrs(P, .One, [size]u8);
}
pub fn asBytes(ptr: anytype) AsBytesReturnType(@TypeOf(ptr)) {
    const P = @TypeOf(ptr);
    const T = AsBytesReturnType(P);
    return @ptrCast(T, @alignCast(meta.alignment(T), ptr));
}
test "asBytes" {
    if (builtin.zig_backend == .stage1) return error.SkipZigTest;
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };
    try testing.expect(eql(u8, asBytes(&deadbeef), deadbeef_bytes));
    var codeface = @as(u32, 0xC0DEFACE);
    for (asBytes(&codeface).*) |*b|
        b.* = 0;
    try testing.expect(codeface == 0);
    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };
    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    switch (native_endian) {
        .Little => {
            try testing.expect(eql(u8, asBytes(&inst), "\xBE\xEF\xDE\xA1"));
        },
        .Big => {
            try testing.expect(eql(u8, asBytes(&inst), "\xA1\xDE\xEF\xBE"));
        },
    }
    const ZST = struct {};
    const zero = ZST{};
    try testing.expect(eql(u8, asBytes(&zero), ""));
}
test "asBytes preserves pointer attributes" {
    const inArr: u32 align(16) = 0xDEADBEEF;
    const inPtr = @ptrCast(*align(16) const volatile u32, &inArr);
    const outSlice = asBytes(inPtr);
    const in = @typeInfo(@TypeOf(inPtr)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;
    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}
pub fn toBytes(value: anytype) [@sizeOf(@TypeOf(value))]u8 {
    return asBytes(&value).*;
}
test "toBytes" {
    var my_bytes = toBytes(@as(u32, 0x12345678));
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x12\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x78\x56\x34\x12")),
    }
    my_bytes[0] = '\x99';
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x99\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x99\x56\x34\x12")),
    }
}
fn BytesAsValueReturnType(comptime T: type, comptime B: type) type {
    const size = @as(usize, @sizeOf(T));
    if (comptime !trait.is(.Pointer)(B) or
        (meta.Child(B) != [size]u8 and meta.Child(B) != [size:0]u8))
    {
        comptime var buf: [100]u8 = undefined;
        @compileError(std.fmt.bufPrint(&buf, "expected *[{}]u8, passed " ++ @typeName(B), .{size}) catch unreachable);
    }
    return CopyPtrAttrs(B, .One, T);
}
pub fn bytesAsValue(comptime T: type, bytes: anytype) BytesAsValueReturnType(T, @TypeOf(bytes)) {
    return @ptrCast(BytesAsValueReturnType(T, @TypeOf(bytes)), bytes);
}
test "bytesAsValue" {
    if (builtin.zig_backend == .stage1) return error.SkipZigTest;
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };
    try testing.expect(deadbeef == bytesAsValue(u32, deadbeef_bytes).*);
    var codeface_bytes: [4]u8 = switch (native_endian) {
        .Big => "\xC0\xDE\xFA\xCE",
        .Little => "\xCE\xFA\xDE\xC0",
    }.*;
    var codeface = bytesAsValue(u32, &codeface_bytes);
    try testing.expect(codeface.* == 0xC0DEFACE);
    codeface.* = 0;
    for (codeface_bytes) |b|
        try testing.expect(b == 0);
    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };
    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    const inst_bytes = switch (native_endian) {
        .Little => "\xBE\xEF\xDE\xA1",
        .Big => "\xA1\xDE\xEF\xBE",
    };
    const inst2 = bytesAsValue(S, inst_bytes);
    try testing.expect(meta.eql(inst, inst2.*));
}
test "bytesAsValue preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @ptrCast(*align(16) const volatile [4]u8, &inArr)[0..];
    const outPtr = bytesAsValue(u32, inSlice);
    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outPtr)).Pointer;
    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}
pub fn bytesToValue(comptime T: type, bytes: anytype) T {
    return bytesAsValue(T, bytes).*;
}
test "bytesToValue" {
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };
    const deadbeef = bytesToValue(u32, deadbeef_bytes);
    try testing.expect(deadbeef == @as(u32, 0xDEADBEEF));
}
fn BytesAsSliceReturnType(comptime T: type, comptime bytesType: type) type {
    if (!(trait.isSlice(bytesType) or trait.isPtrTo(.Array)(bytesType)) or meta.Elem(bytesType) != u8) {
        @compileError("expected []u8 or *[_]u8, passed " ++ @typeName(bytesType));
    }
    if (trait.isPtrTo(.Array)(bytesType) and @typeInfo(meta.Child(bytesType)).Array.len % @sizeOf(T) != 0) {
        @compileError("number of bytes in " ++ @typeName(bytesType) ++ " is not divisible by size of " ++ @typeName(T));
    }
    return CopyPtrAttrs(bytesType, .Slice, T);
}
pub fn bytesAsSlice(comptime T: type, bytes: anytype) BytesAsSliceReturnType(T, @TypeOf(bytes)) {
    
    
    if (bytes.len == 0) {
        return &[0]T{};
    }
    const cast_target = CopyPtrAttrs(@TypeOf(bytes), .Many, T);
    return @ptrCast(cast_target, bytes)[0..@divExact(bytes.len, @sizeOf(T))];
}
test "bytesAsSlice" {
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        const slice = bytesAsSlice(u16, bytes[0..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        var runtime_zero: usize = 0;
        const slice = bytesAsSlice(u16, bytes[runtime_zero..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
}
test "bytesAsSlice keeps pointer alignment" {
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        const numbers = bytesAsSlice(u32, bytes[0..]);
        comptime try testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        var runtime_zero: usize = 0;
        const numbers = bytesAsSlice(u32, bytes[runtime_zero..]);
        comptime try testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
}
test "bytesAsSlice on a packed struct" {
    const F = packed struct {
        a: u8,
    };
    var b = [1]u8{9};
    var f = bytesAsSlice(F, &b);
    try testing.expect(f[0].a == 9);
}
test "bytesAsSlice with specified alignment" {
    var bytes align(4) = [_]u8{
        0x33,
        0x33,
        0x33,
        0x33,
    };
    const slice: []u32 = std.mem.bytesAsSlice(u32, bytes[0..]);
    try testing.expect(slice[0] == 0x33333333);
}
test "bytesAsSlice preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @ptrCast(*align(16) const volatile [4]u8, &inArr)[0..];
    const outSlice = bytesAsSlice(u16, inSlice);
    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;
    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}
fn SliceAsBytesReturnType(comptime sliceType: type) type {
    if (!trait.isSlice(sliceType) and !trait.isPtrTo(.Array)(sliceType)) {
        @compileError("expected []T or *[_]T, passed " ++ @typeName(sliceType));
    }
    return CopyPtrAttrs(sliceType, .Slice, u8);
}
pub fn sliceAsBytes(slice: anytype) SliceAsBytesReturnType(@TypeOf(slice)) {
    const Slice = @TypeOf(slice);
    
    
    if (slice.len == 0 and comptime meta.sentinel(Slice) == null) {
        return &[0]u8{};
    }
    const cast_target = CopyPtrAttrs(Slice, .Many, u8);
    return @ptrCast(cast_target, slice)[0 .. slice.len * @sizeOf(meta.Elem(Slice))];
}
test "sliceAsBytes" {
    const bytes = [_]u16{ 0xDEAD, 0xBEEF };
    const slice = sliceAsBytes(bytes[0..]);
    try testing.expect(slice.len == 4);
    try testing.expect(eql(u8, slice, switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xAD\xDE\xEF\xBE",
    }));
}
test "sliceAsBytes with sentinel slice" {
    const empty_string: [:0]const u8 = "";
    const bytes = sliceAsBytes(empty_string);
    try testing.expect(bytes.len == 0);
}
test "sliceAsBytes packed struct at runtime and comptime" {
    if (builtin.zig_backend == .stage1) return error.SkipZigTest;
    const Foo = packed struct {
        a: u4,
        b: u4,
    };
    const S = struct {
        fn doTheTest() !void {
            var foo: Foo = undefined;
            var slice = sliceAsBytes(@as(*[1]Foo, &foo)[0..1]);
            slice[0] = 0x13;
            try testing.expect(foo.a == 0x3);
            try testing.expect(foo.b == 0x1);
        }
    };
    try S.doTheTest();
    comptime try S.doTheTest();
}
test "sliceAsBytes and bytesAsSlice back" {
    try testing.expect(@sizeOf(i32) == 4);
    var big_thing_array = [_]i32{ 1, 2, 3, 4 };
    const big_thing_slice: []i32 = big_thing_array[0..];
    const bytes = sliceAsBytes(big_thing_slice);
    try testing.expect(bytes.len == 4 * 4);
    bytes[4] = 0;
    bytes[5] = 0;
    bytes[6] = 0;
    bytes[7] = 0;
    try testing.expect(big_thing_slice[1] == 0);
    const big_thing_again = bytesAsSlice(i32, bytes);
    try testing.expect(big_thing_again[2] == 3);
    big_thing_again[2] = -1;
    try testing.expect(bytes[8] == math.maxInt(u8));
    try testing.expect(bytes[9] == math.maxInt(u8));
    try testing.expect(bytes[10] == math.maxInt(u8));
    try testing.expect(bytes[11] == math.maxInt(u8));
}
test "sliceAsBytes preserves pointer attributes" {
    const inArr align(16) = [2]u16{ 0xDEAD, 0xBEEF };
    const inSlice = @ptrCast(*align(16) const volatile [2]u16, &inArr)[0..];
    const outSlice = sliceAsBytes(inSlice);
    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;
    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}
pub fn alignForward(addr: usize, alignment: usize) usize {
    return alignForwardGeneric(usize, addr, alignment);
}
pub fn alignForwardGeneric(comptime T: type, addr: T, alignment: T) T {
    return alignBackwardGeneric(T, addr + (alignment - 1), alignment);
}
pub fn doNotOptimizeAway(val: anytype) void {
    asm volatile (""
        :
        : [val] "rm" (val),
        : "memory"
    );
}
test "alignForward" {
    try testing.expect(alignForward(1, 1) == 1);
    try testing.expect(alignForward(2, 1) == 2);
    try testing.expect(alignForward(1, 2) == 2);
    try testing.expect(alignForward(2, 2) == 2);
    try testing.expect(alignForward(3, 2) == 4);
    try testing.expect(alignForward(4, 2) == 4);
    try testing.expect(alignForward(7, 8) == 8);
    try testing.expect(alignForward(8, 8) == 8);
    try testing.expect(alignForward(9, 8) == 16);
    try testing.expect(alignForward(15, 8) == 16);
    try testing.expect(alignForward(16, 8) == 16);
    try testing.expect(alignForward(17, 8) == 24);
}
pub fn alignBackwardAnyAlign(i: usize, alignment: usize) usize {
    if (@popCount(alignment) == 1)
        return alignBackward(i, alignment);
    assert(alignment != 0);
    return i - @mod(i, alignment);
}
pub fn alignBackward(addr: usize, alignment: usize) usize {
    return alignBackwardGeneric(usize, addr, alignment);
}
pub fn alignBackwardGeneric(comptime T: type, addr: T, alignment: T) T {
    assert(@popCount(alignment) == 1);
    
    
    
    return addr & ~(alignment - 1);
}
pub fn isValidAlign(alignment: u29) bool {
    return @popCount(alignment) == 1;
}
pub fn isAlignedAnyAlign(i: usize, alignment: usize) bool {
    if (@popCount(alignment) == 1)
        return isAligned(i, alignment);
    assert(alignment != 0);
    return 0 == @mod(i, alignment);
}
pub fn isAligned(addr: usize, alignment: usize) bool {
    return isAlignedGeneric(u64, addr, alignment);
}
pub fn isAlignedGeneric(comptime T: type, addr: T, alignment: T) bool {
    return alignBackwardGeneric(T, addr, alignment) == addr;
}
test "isAligned" {
    try testing.expect(isAligned(0, 4));
    try testing.expect(isAligned(1, 1));
    try testing.expect(isAligned(2, 1));
    try testing.expect(isAligned(2, 2));
    try testing.expect(!isAligned(2, 4));
    try testing.expect(isAligned(3, 1));
    try testing.expect(!isAligned(3, 2));
    try testing.expect(!isAligned(3, 4));
    try testing.expect(isAligned(4, 4));
    try testing.expect(isAligned(4, 2));
    try testing.expect(isAligned(4, 1));
    try testing.expect(!isAligned(4, 8));
    try testing.expect(!isAligned(4, 16));
}
test "freeing empty string with null-terminated sentinel" {
    const empty_string = try testing.allocator.dupeZ(u8, "");
    testing.allocator.free(empty_string);
}
fn AlignedSlice(comptime AttributeSource: type, comptime new_alignment: u29) type {
    const info = @typeInfo(AttributeSource).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = .Slice,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = new_alignment,
            .address_space = info.address_space,
            .child = info.child,
            .sentinel = null,
        },
    });
}
pub fn alignInBytes(bytes: []u8, comptime new_alignment: usize) ?[]align(new_alignment) u8 {
    const begin_address = @ptrToInt(bytes.ptr);
    const end_address = begin_address + bytes.len;
    const begin_address_aligned = mem.alignForward(begin_address, new_alignment);
    const new_length = std.math.sub(usize, end_address, begin_address_aligned) catch |e| switch (e) {
        error.Overflow => return null,
    };
    const alignment_offset = begin_address_aligned - begin_address;
    return @alignCast(new_alignment, bytes[alignment_offset .. alignment_offset + new_length]);
}
pub fn alignInSlice(slice: anytype, comptime new_alignment: usize) ?AlignedSlice(@TypeOf(slice), new_alignment) {
    const bytes = sliceAsBytes(slice);
    const aligned_bytes = alignInBytes(bytes, new_alignment) orelse return null;
    const Element = @TypeOf(slice[0]);
    const slice_length_bytes = aligned_bytes.len - (aligned_bytes.len % @sizeOf(Element));
    const aligned_slice = bytesAsSlice(Element, aligned_bytes[0..slice_length_bytes]);
    return @alignCast(new_alignment, aligned_slice);
}
test "read/write(Var)PackedInt" {
    switch (builtin.cpu.arch) {
        
        
        .wasm32, .wasm64 => return error.SkipZigTest,
        else => {},
    }
    const foreign_endian: Endian = if (native_endian == .Big) .Little else .Big;
    const expect = std.testing.expect;
    var prng = std.rand.DefaultPrng.init(1234);
    const random = prng.random();
    @setEvalBranchQuota(10_000);
    inline for ([_]type{ u8, u16, u32, u128 }) |BackingType| {
        for ([_]BackingType{
            @as(BackingType, 0), 
            -%@as(BackingType, 1), 
            random.int(BackingType), 
            random.int(BackingType), 
            random.int(BackingType), 
        }) |init_value| {
            const uTs = [_]type{ u1, u3, u7, u8, u9, u10, u15, u16, u86 };
            const iTs = [_]type{ i1, i3, i7, i8, i9, i10, i15, i16, i86 };
            inline for (uTs ++ iTs) |PackedType| {
                if (@bitSizeOf(PackedType) > @bitSizeOf(BackingType))
                    continue;
                const iPackedType = std.meta.Int(.signed, @bitSizeOf(PackedType));
                const uPackedType = std.meta.Int(.unsigned, @bitSizeOf(PackedType));
                const Log2T = std.math.Log2Int(BackingType);
                const offset_at_end = @bitSizeOf(BackingType) - @bitSizeOf(PackedType);
                for ([_]usize{ 0, 1, 7, 8, 9, 10, 15, 16, 86, offset_at_end }) |offset| {
                    if (offset > offset_at_end or offset == @bitSizeOf(BackingType))
                        continue;
                    for ([_]PackedType{
                        ~@as(PackedType, 0), 
                        @as(PackedType, 0), 
                        @bitCast(PackedType, @as(iPackedType, math.maxInt(iPackedType))), 
                        @bitCast(PackedType, @as(iPackedType, math.minInt(iPackedType))), 
                        random.int(PackedType), 
                        random.int(PackedType), 
                    }) |write_value| {
                        { 
                            
                            var value: BackingType = init_value;
                            
                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));
                            
                            writePackedInt(PackedType, asBytes(&value), offset, write_value, native_endian);
                            try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));
                            
                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value2 == write_value);
                            
                            const diff_bits = init_value ^ value;
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                        }
                        { 
                            
                            var value: BackingType = @byteSwap(init_value);
                            
                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));
                            
                            writePackedInt(PackedType, asBytes(&value), offset, write_value, foreign_endian);
                            try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));
                            
                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value2 == write_value);
                            
                            const diff_bits = init_value ^ @byteSwap(value);
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                        }
                        const signedness = @typeInfo(PackedType).Int.signedness;
                        const NextPowerOfTwoInt = std.meta.Int(signedness, comptime try std.math.ceilPowerOfTwo(u16, @bitSizeOf(PackedType)));
                        const ui64 = std.meta.Int(signedness, 64);
                        inline for ([_]type{ PackedType, NextPowerOfTwoInt, ui64 }) |U| {
                            { 
                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;
                                
                                var value: BackingType = init_value;
                                
                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));
                                
                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), native_endian);
                                try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));
                                
                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value2 == write_value);
                                
                                const diff_bits = init_value ^ value;
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                            }
                            { 
                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;
                                
                                var value: BackingType = @byteSwap(init_value);
                                
                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));
                                
                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), foreign_endian);
                                try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));
                                
                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value2 == write_value);
                                
                                const diff_bits = init_value ^ @byteSwap(value);
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                            }
                        }
                    }
                }
            }
        }
    }
}