|
CGAL 5.6 - 2D Placement of Streamlines
|
#include <CGAL/Stream_lines_2.h>
The class Stream_lines_2 generates a placement of streamlines in a 2D domain according to a bidimensional vector field.
The class places streamlines according to a specified density and gives access to the generated streamlines via two iterators over a container of iterators that provide access to the streamline points.
| VectorField_2 | must be a model of the concept VectorField_2. |
| Integrator_2 | is a function object and must be a model of the concept Integrator_2. |
Public Member Functions | |
| Stream_lines_2 (VectorField_2 vector_field_2, Integrator_2 integrator_2, FT separating_distance, FT saturation_ratio) | |
| Constructor which generates a streamline placement. | |
Types | |
| typedef VectorField_2::Geom_traits | Geom_traits |
| the traits class. | |
| typedef VectorField_2::FT | FT |
| the scalar type. | |
| typedef VectorField_2::Point_2 | Point_2 |
| the point type. | |
| typedef VectorField_2::Vector_2 | Vector_2 |
| the vector type. | |
Streamline Iterators | |
| typedef unspecified_type | Point_iterator_2 |
iterator of points with value type Point_2. | |
| typedef unspecified_type | Stream_line_iterator_2 |
an iterator to visit the streamlines with value type std::pair<Point_iterator_2, Point_iterator_2>. | |
| Stream_line_iterator | begin () const |
| Starts at the first streamline. | |
| Stream_line_iterator | end () const |
| Past-the-end iterator. | |
Modifiers | |
| void | set_separating_distance (FT new_value) |
| Modify the separating distance. | |
| void | set_saturation_ratio (FT new_value) |
| Modify the saturation ratio. | |
| void | update () |
| Update the placement after changing the separating distance or the saturation ratio. | |
Access Functions | |
| FT | get_separating_distance () const |
| returns the separating distance. | |
| FT | get_saturation_ratio () const |
| returns the saturation ratio. | |
| void | print_stream_lines (std::ofstream &fw) |
| prints the streamlines to an ASCII file: line by line, and point by point. | |