Next: Roots of Polynomials References and Further Reading, Previous: General Polynomial Equations, Up: Polynomials [Index]
To demonstrate the use of the general polynomial solver we will take the polynomial P(x) = x^5 - 1 which has the following roots,
1, e^{2\pi i /5}, e^{4\pi i /5}, e^{6\pi i /5}, e^{8\pi i /5}
The following program will find these roots.
#include <stdio.h>
#include <gsl/gsl_poly.h>
int
main (void)
{
  int i;
  /* coefficients of P(x) =  -1 + x^5  */
  double a[6] = { -1, 0, 0, 0, 0, 1 };  
  double z[10];
  gsl_poly_complex_workspace * w 
      = gsl_poly_complex_workspace_alloc (6);
  
  gsl_poly_complex_solve (a, 6, w, z);
  gsl_poly_complex_workspace_free (w);
  for (i = 0; i < 5; i++)
    {
      printf ("z%d = %+.18f %+.18f\n", 
              i, z[2*i], z[2*i+1]);
    }
  return 0;
}
The output of the program is,
$ ./a.out
z0 = -0.809016994374947673 +0.587785252292473359 z1 = -0.809016994374947673 -0.587785252292473359 z2 = +0.309016994374947507 +0.951056516295152976 z3 = +0.309016994374947507 -0.951056516295152976 z4 = +0.999999999999999889 +0.000000000000000000
which agrees with the analytic result, z_n = \exp(2 \pi n i/5).