00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022 #include <string>
00023 #include <map>
00024 #include <iostream>
00025 #include <sstream>
00026 #include <iomanip>
00027 #include <utility>
00028
00029 #include "HepPID/ParticleName.hh"
00030 #include "HepPID/ParticleIDMethods.hh"
00031 #include "HepPID/Version.hh"
00032
00033 namespace HepPID {
00034
00035 typedef std::map< int, std::string > PartcleIdMap;
00036 typedef std::map< std::string, int > ParticleLookupMap;
00037
00044 class ParticleNameMap{
00045
00046 public:
00047
00048 typedef PartcleIdMap::const_iterator idIterator;
00049 typedef ParticleLookupMap::const_iterator nameIterator;
00050
00051 ParticleNameMap(PartcleIdMap m1,ParticleLookupMap m2)
00052 : itsNameMap(m1), itsLookupMap(m2) {}
00053 ~ParticleNameMap() {}
00054
00055 PartcleIdMap nameMap() const { return itsNameMap; }
00056 ParticleLookupMap lookupMap() const { return itsLookupMap; }
00057 idIterator begin() const { return itsNameMap.begin(); }
00058 idIterator end() const { return itsNameMap.end(); }
00059 idIterator find( const int & id) const { return itsNameMap.find(id); }
00060 nameIterator beginLookupMap() const { return itsLookupMap.begin(); }
00061 nameIterator endLookupMap() const { return itsLookupMap.end(); }
00062 nameIterator findString( const std::string & s) const { return itsLookupMap.find(s); }
00063
00064 private:
00065
00066 PartcleIdMap itsNameMap;
00067 ParticleLookupMap itsLookupMap;
00068
00069
00070 ParticleNameMap( const ParticleNameMap & );
00071 ParticleNameMap & operator = ( const ParticleNameMap & );
00072
00073 };
00074
00075 namespace {
00076
00077 ParticleNameMap const & ParticleNameInit()
00078 {
00079
00080 PartcleIdMap m;
00081 ParticleLookupMap nameMap;
00082
00083 static const struct {
00084 int pid;
00085 const char* pname;
00086 } SNames[] = {
00087 { 0, "" },
00088 { 1, "d" },
00089 { -1, "d~" },
00090 { 2, "u" },
00091 { -2, "u~" },
00092 { 3, "s" },
00093 { -3, "s~" },
00094 { 4, "c" },
00095 { -4, "c~" },
00096 { 5, "b" },
00097 { -5, "b~" },
00098 { 6, "t" },
00099 { -6, "t~" },
00100 { 7, "b'" },
00101 { -7, "b'~" },
00102 { 8, "t'" },
00103 { -8, "t'~" },
00104 { 11, "e^-" },
00105 { -11, "e^+" },
00106 { 12, "nu_e" },
00107 { -12, "nu_e~" },
00108 { 13, "mu^-" },
00109 { -13, "mu^+" },
00110 { 14, "nu_mu" },
00111 { -14, "nu_mu~" },
00112 { 15, "tau^-" },
00113 { -15, "tau^+" },
00114 { 16, "nu_tau" },
00115 { -16, "nu_tau~" },
00116 { 17, "tau'^-" },
00117 { -17, "tau'^+" },
00118 { 18, "nu_tau'" },
00119 { -18, "nu_tau'~" },
00120 { 21, "g" },
00121 { 22, "gamma" },
00122 { 10022, "virtual-photon" },
00123 { 20022, "Cerenkov-radiation" },
00124 { 23, "Z^0" },
00125 { 24, "W^+" },
00126 { -24, "W^-" },
00127 { 25, "H_1^0" },
00128 { 32, "Z_2^0" },
00129 { 33, "Z_3^0" },
00130 { 34, "W_2^+" },
00131 { -34, "W_2^-" },
00132 { 35, "H_2^0" },
00133 { 36, "H_3^0" },
00134 { 37, "H^+" },
00135 { -37, "H^-" },
00136 { 39, "G" },
00137 { 41, "R^0" },
00138 { -41, "R~^0" },
00139 { 42, "LQ_c" },
00140 { -42, "LQ_c~" },
00141 { 43, "Xu^0" },
00142 { 44, "Xu^+" },
00143 { -44, "Xu^-" },
00144 { 51, "H_L^0" },
00145 { 52, "H_1^++" },
00146 { -52, "H_1^--" },
00147 { 53, "H_2^+" },
00148 { -53, "H_2^-" },
00149 { 54, "H_2^++" },
00150 { -54, "H_2^--" },
00151 { 55, "H_4^0" },
00152 { -55, "H_4~^0" },
00153 { 81, "generator-specific+81" },
00154 { 82, "generator-specific+82" },
00155 { 83, "generator-specific+83" },
00156 { 84, "generator-specific+84" },
00157 { 85, "generator-specific+85" },
00158 { 86, "generator-specific+86" },
00159 { 87, "generator-specific+87" },
00160 { 88, "generator-specific+88" },
00161 { 89, "generator-specific+89" },
00162 { 90, "generator-specific+90" },
00163 { 91, "generator-specific+91" },
00164 { 92, "generator-specific+92" },
00165 { 93, "generator-specific+93" },
00166 { 94, "generator-specific+94" },
00167 { 95, "generator-specific+95" },
00168 { 96, "generator-specific+96" },
00169 { 97, "generator-specific+97" },
00170 { 98, "generator-specific+98" },
00171 { 99, "generator-specific+99" },
00172 { -81, "generator-specific-81" },
00173 { -82, "generator-specific-82" },
00174 { -83, "generator-specific-83" },
00175 { -84, "generator-specific-84" },
00176 { -85, "generator-specific-85" },
00177 { -86, "generator-specific-86" },
00178 { -87, "generator-specific-87" },
00179 { -88, "generator-specific-88" },
00180 { -89, "generator-specific-89" },
00181 { -90, "generator-specific-90" },
00182 { -91, "generator-specific-91" },
00183 { -92, "generator-specific-92" },
00184 { -93, "generator-specific-93" },
00185 { -94, "generator-specific-94" },
00186 { -95, "generator-specific-95" },
00187 { -96, "generator-specific-96" },
00188 { -97, "generator-specific-97" },
00189 { -98, "generator-specific-98" },
00190 { -99, "generator-specific-99" },
00191 { 100, "generator-specific+100" },
00192 { -100, "generator-specific-100" },
00193 { 101, "geantino" },
00194 { 102, "charged-geantino" },
00195 { 110, "reggeon" },
00196 { 130, "K_L^0" },
00197 { 310, "K_S^0" },
00198 { 990, "pomeron" },
00199 { 9990, "odderon" },
00200 { 1000001, "susy-d_L" },
00201 { -1000001, "susy-d_L~" },
00202 { 1000002, "susy-u_L" },
00203 { -1000002, "susy-u_L~" },
00204 { 1000003, "susy-s_L" },
00205 { -1000003, "susy-s_L~" },
00206 { 1000004, "susy-c_L" },
00207 { -1000004, "susy-c_L~" },
00208 { 1000005, "susy-b_1" },
00209 { -1000005, "susy-b_1~" },
00210 { 1000006, "susy-t_1" },
00211 { -1000006, "susy-t_1~" },
00212 { 1000011, "susy-e_L^-" },
00213 { -1000011, "susy-e_L^+" },
00214 { 1000012, "susy-nu_eL" },
00215 { -1000012, "susy-nu_eL~" },
00216 { 1000013, "susy-mu_L^-" },
00217 { -1000013, "susy-mu_L^+" },
00218 { 1000014, "susy-nu_muL" },
00219 { -1000014, "susy-nu_muL~" },
00220 { 1000015, "susy-tau_L^-" },
00221 { -1000015, "susy-tau_L^+" },
00222 { 1000016, "susy-nu_tauL" },
00223 { -1000016, "susy-nu_tauL~" },
00224 { 1000021, "gluino" },
00225 { 1000022, "susy-chi_1^0" },
00226 { 1000023, "susy-chi_2^0" },
00227 { 1000024, "susy-chi_1^+" },
00228 { -1000024, "susy-chi_1^-" },
00229 { 1000025, "susy-chi_3^0" },
00230 { 1000035, "susy-chi_4^0" },
00231 { 1000037, "susy-chi_2^+" },
00232 { -1000037, "susy-chi_2^-" },
00233 { 1000039, "gravitino" },
00234 { 2000001, "susy-d_R" },
00235 { -2000001, "susy-d_R~" },
00236 { 2000002, "susy-u_R" },
00237 { -2000002, "susy-u_R~" },
00238 { 2000003, "susy-s_R" },
00239 { -2000003, "susy-s_R~" },
00240 { 2000004, "susy-c_R" },
00241 { -2000004, "susy-c_R~" },
00242 { 2000005, "susy-b_R" },
00243 { -2000005, "susy-b_R~" },
00244 { 2000006, "susy-t_R" },
00245 { -2000006, "susy-t_R~" },
00246 { 2000011, "susy-e_R^-" },
00247 { -2000011, "susy-e_R^+" },
00248 { 2000012, "susy-nu_eR" },
00249 { -2000012, "susy-nu_eR~" },
00250 { 2000013, "susy-mu_R^-" },
00251 { -2000013, "susy-mu_R^+" },
00252 { 2000014, "susy-nu_muR" },
00253 { -2000014, "susy-nu_muR~" },
00254 { 2000015, "susy-tau_R^-" },
00255 { -2000015, "susy-tau_R^+" },
00256 { 2000016, "susy-nu_tauR" },
00257 { -2000016, "susy-nu_tauR~" },
00258 { 3100021, "V8_tech" },
00259 { -3100021, "V8_tech~" },
00260 { 3000111, "pi_tech^0" },
00261 { 3000115, "a_tech^0" },
00262 { 3060111, "pi_tech_22_1" },
00263 { 3160111, "pi_tech_22_8" },
00264 { 3000113, "rho_tech^0" },
00265 { 3130113, "rho_tech_11" },
00266 { 3140113, "rho_tech_12" },
00267 { 3150113, "rho_tech_21" },
00268 { 3160113, "rho_tech_22" },
00269 { 3000211, "pi_tech^+" },
00270 { -3000211, "pi_tech^-" },
00271 { 3000213, "rho_tech^+" },
00272 { -3000213, "rho_tech^-" },
00273 { 3000215, "a_tech^+" },
00274 { -3000215, "a_tech^-" },
00275 { 3000221, "pi'_tech" },
00276 { 3100221, "eta_tech" },
00277 { 3000223, "omega_tech" },
00278 { 4000001, "d*" },
00279 { -4000001, "d*~" },
00280 { 4000002, "u*" },
00281 { -4000002, "u*~" },
00282 { 4000011, "e*^-" },
00283 { -4000011, "e*^+" },
00284 { 4000012, "nu*_e" },
00285 { -4000012, "nu*_e~" },
00286 { 4000039, "G*" },
00287 { -4000039, "G*~" },
00288 { 5000040, "black_hole" },
00289 { 5100001, "d_L^(1)" },
00290 { -5100001, "d~_L^(1)" },
00291 { 5100002, "u_L^(1)" },
00292 { -5100002, "u~_L^(1)" },
00293 { 5100003, "s_L^(1)" },
00294 { -5100003, "s~_L^(1)" },
00295 { 5100004, "c_L^(1)" },
00296 { -5100004, "c~_L^(1)" },
00297 { 5100005, "b_L^(1)" },
00298 { -5100005, "b~_L^(1)" },
00299 { 5100006, "t_L^(1)" },
00300 { -5100006, "t~_L^(1)" },
00301 { 5100011, "e_L^(1)-" },
00302 { -5100011, "e_L^(1)+" },
00303 { 5100012, "nu_eL^(1)" },
00304 { -5100012, "nu_eL~^(1)" },
00305 { 5100013, "mu_L^(1)-" },
00306 { -5100013, "mu_L^(1)+" },
00307 { 5100014, "nu_muL^(1)" },
00308 { -5100014, "nu_muL~^(1)" },
00309 { 5100015, "tau_L^(1)-" },
00310 { -5100015, "tau_L^(1)+" },
00311 { 5100016, "nu_tauL^(1)" },
00312 { -5100016, "nu_tauL~^(1)" },
00313 { 6100001, "d_R^(1)" },
00314 { -6100001, "d~_R^(1)" },
00315 { 6100002, "u_R^(1)" },
00316 { -6100002, "u~_R^(1)" },
00317 { 6100003, "s_R^(1)" },
00318 { -6100003, "s~_R^(1)" },
00319 { 6100004, "c_R^(1)" },
00320 { -6100004, "c~_R^(1)" },
00321 { 6100005, "b_R^(1)" },
00322 { -6100005, "b~_R^(1)" },
00323 { 6100006, "t_R^(1)" },
00324 { -6100006, "t~_R^(1)" },
00325 { 6100011, "e_R^(1)-" },
00326 { -6100011, "e_R^(1)+" },
00327 { 6100012, "nu_eR^(1)" },
00328 { -6100012, "nu_eR~^(1)" },
00329 { 6100013, "mu_R^(1)-" },
00330 { -6100013, "mu_R^(1)+" },
00331 { 6100014, "nu_muR^(1)" },
00332 { -6100014, "nu_muR~^(1)" },
00333 { 6100015, "tau_R^(1)-" },
00334 { -6100015, "tau_R^(1)+" },
00335 { 6100016, "nu_tauR^(1)" },
00336 { -6100016, "nu_tauR~^(1)" },
00337 { 5100021, "g^(1)" },
00338 { 5100022, "gamma^(1)" },
00339 { 5100023, "Z^(1)0" },
00340 { 5100024, "W^(1)+" },
00341 { -5100024, "W^(1)-" },
00342 { 5100025, "h^(1)0" },
00343 { 5100039, "G^(1)" },
00344 { 9900012, "nu_Re" },
00345 { -9900012, "nu_Re~" },
00346 { 9900014, "nu_Rmu" },
00347 { -9900014, "nu_Rmu~" },
00348 { 9900016, "nu_Rtau" },
00349 { -9900016, "nu_Rtau~" },
00350 { 9900023, "Z_R^0" },
00351 { -9900023, "Z_R~^0" },
00352 { 9900024, "W_R^+" },
00353 { -9900024, "W_R^-" },
00354 { 9900041, "H_L^++" },
00355 { -9900041, "H_L^--" },
00356 { 9900042, "H_R^++" },
00357 { -9900042, "H_R^--" },
00358 { 9910113, "rho_diffr^0" },
00359 { 9910211, "pi_diffr^+" },
00360 { -9910211, "pi_diffr^-" },
00361 { 9910223, "omega_diffr" },
00362 { 9910333, "phi_diffr" },
00363 { 9910443, "psi_diffr" },
00364 { 9912112, "n_diffr^0" },
00365 { -9912112, "n_diffr~^0" },
00366 { 9912212, "p_diffr^+" },
00367 { -9912212, "p_diffr~^-" },
00368 { 9920022, "remnant photon" },
00369 { 9922212, "remnant nucleon" },
00370 { -9922212, "remnant nucleon~" },
00371 { 9900441, "cc~[1S08]" },
00372 { 9910441, "cc~[3P08]" },
00373 { 9900443, "cc~[3S18]" },
00374 { 9900551, "bb~[1S08]" },
00375 { 9910551, "bb~[3P08]" },
00376 { 9900553, "bb~[3S18]" },
00377 { 1103, "dd_1" },
00378 { -1103, "dd_1~" },
00379 { 2101, "ud_0" },
00380 { -2101, "ud_0~" },
00381 { 2103, "ud_1" },
00382 { -2103, "ud_1~" },
00383 { 2203, "uu_1" },
00384 { -2203, "uu_1~" },
00385 { 3101, "sd_0" },
00386 { -3101, "sd_0~" },
00387 { 3103, "sd_1" },
00388 { -3103, "sd_1~" },
00389 { 3201, "su_0" },
00390 { -3201, "su_0~" },
00391 { 3203, "su_1" },
00392 { -3203, "su_1~" },
00393 { 3303, "ss_1" },
00394 { -3303, "ss_1~" },
00395 { 4101, "cd_0" },
00396 { -4101, "cd_0~" },
00397 { 4103, "cd_1" },
00398 { -4103, "cd_1~" },
00399 { 4201, "cu_0" },
00400 { -4201, "cu_0~" },
00401 { 4203, "cu_1" },
00402 { -4203, "cu_1~" },
00403 { 4301, "cs_0" },
00404 { -4301, "cs_0~" },
00405 { 4303, "cs_1" },
00406 { -4303, "cs_1~" },
00407 { 4403, "cc_1" },
00408 { -4403, "cc_1~" },
00409 { 5101, "bd_0" },
00410 { -5101, "bd_0~" },
00411 { 5103, "bd_1" },
00412 { -5103, "bd_1~" },
00413 { 5201, "bu_0" },
00414 { -5201, "bu_0~" },
00415 { 5203, "bu_1" },
00416 { -5203, "bu_1~" },
00417 { 5301, "bs_0" },
00418 { -5301, "bs_0~" },
00419 { 5303, "bs_1" },
00420 { -5303, "bs_1~" },
00421 { 5401, "bc_0" },
00422 { -5401, "bc_0~" },
00423 { 5403, "bc_1" },
00424 { -5403, "bc_1~" },
00425 { 5503, "bb_1" },
00426 { -5503, "bb_1~" },
00427 { 6101, "td_0" },
00428 { -6101, "td_0~" },
00429 { 6103, "td_1" },
00430 { -6103, "td_1~" },
00431 { 6201, "tu_0" },
00432 { -6201, "tu_0~" },
00433 { 6203, "tu_1" },
00434 { -6203, "tu_1~" },
00435 { 6301, "ts_0" },
00436 { -6301, "ts_0~" },
00437 { 6303, "ts_1" },
00438 { -6303, "ts_1~" },
00439 { 6401, "tc_0" },
00440 { -6401, "tc_0~" },
00441 { 6403, "tc_1" },
00442 { -6403, "tc_1~" },
00443 { 6501, "tb_0" },
00444 { -6501, "tb_0~" },
00445 { 6503, "tb_1" },
00446 { -6503, "tb_1~" },
00447 { 6603, "tt_1" },
00448 { -6603, "tt_1~" },
00449 { 7101, "b'd_0" },
00450 { -7101, "b'd_0~" },
00451 { 7103, "b'd_1" },
00452 { -7103, "b'd_1~" },
00453 { 7201, "b'u_0" },
00454 { -7201, "b'u_0~" },
00455 { 7203, "b'u_1" },
00456 { -7203, "b'u_1~" },
00457 { 7301, "b's_0" },
00458 { -7301, "b's_0~" },
00459 { 7303, "b's_1" },
00460 { -7303, "b's_1~" },
00461 { 7401, "b'c_0" },
00462 { -7401, "b'c_0~" },
00463 { 7403, "b'c_1" },
00464 { -7403, "b'c_1~" },
00465 { 7501, "b'b_0" },
00466 { -7501, "b'b_0~" },
00467 { 7503, "b'b_1" },
00468 { -7503, "b'b_1~" },
00469 { 7601, "b't_0" },
00470 { -7601, "b't_0~" },
00471 { 7603, "b't_1" },
00472 { -7603, "b't_1~" },
00473 { 7703, "b'b'_1" },
00474 { -7703, "b'b'_1~" },
00475 { 8101, "t'd_0" },
00476 { -8101, "t'd_0~" },
00477 { 8103, "t'd_1" },
00478 { -8103, "t'd_1~" },
00479 { 8201, "t'u_0" },
00480 { -8201, "t'u_0~" },
00481 { 8203, "t'u_1" },
00482 { -8203, "t'u_1~" },
00483 { 8301, "t's_0" },
00484 { -8301, "t's_0~" },
00485 { 8303, "t's_1" },
00486 { -8303, "t's_1~" },
00487 { 8401, "t'c_0" },
00488 { -8401, "t'c_0~" },
00489 { 8403, "t'c_1" },
00490 { -8403, "t'c_1~" },
00491 { 8501, "t'b_0" },
00492 { -8501, "t'b_0~" },
00493 { 8503, "t'b_1" },
00494 { -8503, "t'b_1~" },
00495 { 8601, "t't_0" },
00496 { -8601, "t't_0~" },
00497 { 8603, "t't_1" },
00498 { -8603, "t't_1~" },
00499 { 8701, "t'b'_0" },
00500 { -8701, "t'b'_0~" },
00501 { 8703, "t'b'_1" },
00502 { -8703, "t'b'_1~" },
00503 { 8803, "t't'_1" },
00504 { -8803, "t't'_1~" },
00505 { 111, "pi^0" },
00506 { 9000111, "a_0(980)^0" },
00507 { 10111, "a_0(1450)^0" },
00508 { 100111, "pi(1300)^0" },
00509 { 9010111, "pi(1800)^0" },
00510 { 113, "rho(770)^0" },
00511 { 10113, "b_1(1235)^0" },
00512 { 20113, "a_1(1260)^0" },
00513 { 9000113, "pi_1(1400)^0" },
00514 { 100113, "rho(1450)^0" },
00515 { 9010113, "pi_1(1600)^0" },
00516 { 9020113, "a_1(1640)^0" },
00517 { 30113, "rho(1700)^0" },
00518 { 9030113, "rho(1900)^0" },
00519 { 9040113, "rho(2150)^0" },
00520 { 115, "a_2(1320)^0" },
00521 { 10115, "pi_2(1670)^0" },
00522 { 9000115, "a_2(1700)^0" },
00523 { 9010115, "pi_2(2100)^0" },
00524 { 117, "rho_3(1690)^0" },
00525 { 9000117, "rho_3(1990)^0" },
00526 { 9010117, "rho_3(2250)^0" },
00527 { 119, "a_4(2040)^0" },
00528 { 211, "pi^+" },
00529 { -211, "pi^-" },
00530 { 9000211, "a_0(980)^+" },
00531 { -9000211, "a_0(980)^-" },
00532 { 10211, "a_0(1450)^+" },
00533 { -10211, "a_0(1450)^-" },
00534 { 100211, "pi(1300)^+" },
00535 { -100211, "pi(1300)^-" },
00536 { 9010211, "pi(1800)^+" },
00537 { -9010211, "pi(1800)^-" },
00538 { 213, "rho(770)^+" },
00539 { -213, "rho(770)^-" },
00540 { 10213, "b_1(1235)^+" },
00541 { -10213, "b_1(1235)^-" },
00542 { 20213, "a_1(1260)^+" },
00543 { -20213, "a_1(1260)^-" },
00544 { 9000213, "pi_1(1400)^+" },
00545 { -9000213, "pi_1(1400)^-" },
00546 { 100213, "rho(1450)^+" },
00547 { -100213, "rho(1450)^-" },
00548 { 9010213, "pi_1(1600)^+" },
00549 { -9010213, "pi_1(1600)^-" },
00550 { 9020213, "a_1(1640)^+" },
00551 { -9020213, "a_1(1640)^-" },
00552 { 30213, "rho(1700)^+" },
00553 { -30213, "rho(1700)^-" },
00554 { 9030213, "rho(1900)^+" },
00555 { -9030213, "rho(1900)^-" },
00556 { 9040213, "rho(2150)^+" },
00557 { -9040213, "rho(2150)^-" },
00558 { 215, "a_2(1320)^+" },
00559 { -215, "a_2(1320)^-" },
00560 { 10215, "pi_2(1670)^+" },
00561 { -10215, "pi_2(1670)^-" },
00562 { 9000215, "a_2(1700)^+" },
00563 { -9000215, "a_2(1700)^-" },
00564 { 9010215, "pi_2(2100)^+" },
00565 { -9010215, "pi_2(2100)^-" },
00566 { 217, "rho_3(1690)^+" },
00567 { -217, "rho_3(1690)^-" },
00568 { 9000217, "rho_3(1990)^+" },
00569 { -9000217, "rho_3(1990)^-" },
00570 { 9010217, "rho_3(2250)^+" },
00571 { -9010217, "rho_3(2250)^-" },
00572 { 219, "a_4(2040)^+" },
00573 { -219, "a_4(2040)^-" },
00574 { 221, "eta" },
00575 { 9000221, "f_0(600)" },
00576 { 10221, "f_0(1370)" },
00577 { 9010221, "f_0(980)" },
00578 { 9020221, "eta(1405)" },
00579 { 9030221, "f_0(1500)" },
00580 { 9040221, "eta(1760)" },
00581 { 9050221, "f_0(2020)" },
00582 { 9060221, "f_0(2100)" },
00583 { 9070221, "f_0(2200)" },
00584 { 9080221, "eta(2225)" },
00585 { 9090221, "sigma_0" },
00586 { 100221, "eta(1295)" },
00587 { 331, "eta'(958)" },
00588 { 10331, "f_0(1710)" },
00589 { 100331, "eta(1475)" },
00590 { 223, "omega(782)" },
00591 { 9000223, "f_1(1510)" },
00592 { 9010223, "h_1(1595)" },
00593 { 10223, "h_1(1170)" },
00594 { 20223, "f_1(1285)" },
00595 { 30223, "omega(1650)" },
00596 { 100223, "omega(1420)" },
00597 { 333, "phi(1020)" },
00598 { 10333, "h_1(1380)" },
00599 { 20333, "f_1(1420)" },
00600 { 100333, "phi(1680)" },
00601 { 225, "f_2(1270)" },
00602 { 9000225, "f_2(1430)" },
00603 { 10225, "eta_2(1645)" },
00604 { 9010225, "f_2(1565)" },
00605 { 9020225, "f_2(1640)" },
00606 { 9030225, "f_2(1810)" },
00607 { 9040225, "f_2(1910)" },
00608 { 9050225, "f_2(1950)" },
00609 { 9060225, "f_2(2010)" },
00610 { 9070225, "f_2(2150)" },
00611 { 9080225, "f_2(2300)" },
00612 { 9090225, "f_2(2340)" },
00613 { 335, "f'_2(1525)" },
00614 { 10335, "eta_2(1870)" },
00615 { 227, "omega_3(1670)" },
00616 { 337, "phi_3(1850)" },
00617 { 229, "f_4(2050)" },
00618 { 9000229, "f_J(2220)" },
00619 { 9010229, "f_4(2300)" },
00620 { 311, "K^0" },
00621 { -311, "K~^0" },
00622 { 9000311, "K*_0(800)^0" },
00623 { -9000311, "K*_0(800)~^0" },
00624 { 10311, "K*_0(1430)^0" },
00625 { -10311, "K*_0(1430)~^0" },
00626 { 100311, "K(1460)^0" },
00627 { -100311, "K(1460)~^0" },
00628 { 9010311, "K(1830)^0" },
00629 { -9010311, "K(1830)~^0" },
00630 { 9020311, "K*_0(1950)^0" },
00631 { -9020311, "K*_0(1950)~^0" },
00632 { 321, "K^+" },
00633 { -321, "K^-" },
00634 { 9000321, "K*_0(800)^+" },
00635 { -9000321, "K*_0(800)^-" },
00636 { 10321, "K*_0(1430)^+" },
00637 { -10321, "K*_0(1430)^-" },
00638 { 100321, "K(1460)^+" },
00639 { -100321, "K(1460)^-" },
00640 { 9010321, "K(1830)^+" },
00641 { -9010321, "K(1830)^-" },
00642 { 9020321, "K*_0(1950)^+" },
00643 { -9020321, "K*_0(1950)^-" },
00644 { 313, "K*(892)^0" },
00645 { -313, "K*(892)~^0" },
00646 { 10313, "K_1(1270)^0" },
00647 { -10313, "K_1(1270)~^0" },
00648 { 20313, "K_1(1400)^0" },
00649 { -20313, "K_1(1400)~^0" },
00650 { 30313, "K*(1680)^0" },
00651 { -30313, "K*(1680)~^0" },
00652 { 100313, "K*(1410)^0" },
00653 { -100313, "K*(1410)~^0" },
00654 { 9000313, "K_1(1650)^0" },
00655 { -9000313, "K_1(1650)~^0" },
00656 { 323, "K*(892)^+" },
00657 { -323, "K*(892)^-" },
00658 { 10323, "K_1(1270)^+" },
00659 { -10323, "K_1(1270)^-" },
00660 { 20323, "K_1(1400)^+" },
00661 { -20323, "K_1(1400)^-" },
00662 { 30323, "K*(1680)^+" },
00663 { -30323, "K*(1680)^-" },
00664 { 100323, "K*(1410)^+" },
00665 { -100323, "K*(1410)^-" },
00666 { 9000323, "K_1(1650)^+" },
00667 { -9000323, "K_1(1650)^-" },
00668 { 315, "K*_2(1430)^0" },
00669 { -315, "K*_2(1430)~^0" },
00670 { 9000315, "K_2(1580)^0" },
00671 { -9000315, "K_2(1580)~^0" },
00672 { 10315, "K_2(1770)^0" },
00673 { -10315, "K_2(1770)~^0" },
00674 { 9010315, "K*_2(1980)^0" },
00675 { -9010315, "K*_2(1980)~^0" },
00676 { 9020315, "K_2(2250)^0" },
00677 { -9020315, "K_2(2250)~^0" },
00678 { 20315, "K_2(1820)^0" },
00679 { -20315, "K_2(1820)~^0" },
00680 { 325, "K*_2(1430)^+" },
00681 { -325, "K*_2(1430)^-" },
00682 { 9000325, "K_2(1580)^+" },
00683 { -9000325, "K_2(1580)^-" },
00684 { 10325, "K_2(1770)^+" },
00685 { -10325, "K_2(1770)^-" },
00686 { 9010325, "K*_2(1980)^+" },
00687 { -9010325, "K*_2(1980)^-" },
00688 { 9020325, "K_2(2250)^+" },
00689 { -9020325, "K_2(2250)^-" },
00690 { 20325, "K_2(1820)^+" },
00691 { -20325, "K_2(1820)^-" },
00692 { 100325, "K_2(1980)^+" },
00693 { -100325, "K_2(1980)^-" },
00694 { 317, "K*_3(1780)^0" },
00695 { -317, "K*_3(1780)~^0" },
00696 { 9010317, "K_3(2320)^0" },
00697 { -9010317, "K_3(2320)~^0" },
00698 { 327, "K*_3(1780)^+" },
00699 { -327, "K*_3(1780)^-" },
00700 { 9010327, "K_3(2320)^+" },
00701 { -9010327, "K_3(2320)^-" },
00702 { 319, "K*_4(2045)^0" },
00703 { -319, "K*_4(2045)~^0" },
00704 { 9000319, "K_4(2500)^0" },
00705 { -9000319, "K_4(2500)~^0" },
00706 { 329, "K*_4(2045)^+" },
00707 { -329, "K*_4(2045)^-" },
00708 { 9000329, "K_4(2500)^+" },
00709 { -9000329, "K_4(2500)^-" },
00710 { 411, "D^+" },
00711 { -411, "D^-" },
00712 { 10411, "D*_0(2400)^+" },
00713 { -10411, "D*_0(2400)^-" },
00714 { 100411, "D(2S)^+" },
00715 { -100411, "D(2S)^-" },
00716 { 413, "D*(2010)^+" },
00717 { -413, "D*(2010)^-" },
00718 { 10413, "D_1(2420)^+" },
00719 { -10413, "D_1(2420)^-" },
00720 { 20413, "D_1(H)^+" },
00721 { -20413, "D_1(H)^-" },
00722 { 100413, "D*(2S)^+" },
00723 { -100413, "D*(2S)^-" },
00724 { 415, "D*_2(2460)^+" },
00725 { -415, "D*_2(2460)^-" },
00726 { 421, "D^0" },
00727 { -421, "D~^0" },
00728 { 10421, "D*_0(2400)^0" },
00729 { -10421, "D*_0(2400)~^0" },
00730 { 100421, "D(2S)^0" },
00731 { -100421, "D(2S)~^0" },
00732 { 423, "D*(2007)^0" },
00733 { -423, "D*(2007)~^0" },
00734 { 10423, "D_1(2420)^0" },
00735 { -10423, "D_1(2420)~^0" },
00736 { 20423, "D_1(2430)^0" },
00737 { -20423, "D_1(2430)~^0" },
00738 { 100423, "D*(2S)^0" },
00739 { -100423, "D*(2S)~^0" },
00740 { 425, "D*_2(2460)^0" },
00741 { -425, "D*_2(2460)~^0" },
00742 { 431, "D_s^+" },
00743 { -431, "D_s^-" },
00744 { 10431, "D*_s0(2317)^+" },
00745 { -10431, "D*_s0(2317)^-" },
00746 { 433, "D*_s^+" },
00747 { -433, "D*_s^-" },
00748 { 10433, "D_s1(2536)^+" },
00749 { -10433, "D_s1(2536)^-" },
00750 { 20433, "D_s1(2460)^+" },
00751 { -20433, "D_s1(2460)^-" },
00752 { 435, "D*_s2(2573)^+" },
00753 { -435, "D*_s2(2573)^-" },
00754 { 441, "eta_c(1S)" },
00755 { 10441, "chi_c0(1P)" },
00756 { 100441, "eta_c(2S)" },
00757 { 443, "J/psi(1S)" },
00758 { 9000443, "psi(4040)" },
00759 { 10443, "hc(1P)" },
00760 { 9010443, "psi(4160)" },
00761 { 20443, "chi_c1(1P)" },
00762 { 9020443, "psi(4415)" },
00763 { 30443, "psi(3770)" },
00764 { 100443, "psi(2S)" },
00765 { 445, "chi_c2(1P)" },
00766 { 100445, "chi_c2(2P)" },
00767 { 511, "B^0" },
00768 { -511, "B~^0" },
00769 { 10511, "B*_0^0" },
00770 { -10511, "B*_0~^0" },
00771 { 513, "B*^0" },
00772 { -513, "B*~^0" },
00773 { 10513, "B_1(L)^0" },
00774 { -10513, "B_1(L)~^0" },
00775 { 20513, "B_1(H)^0" },
00776 { -20513, "B_1(H)~^0" },
00777 { 515, "B*_2^0" },
00778 { -515, "B*_2~^0" },
00779 { 521, "B^+" },
00780 { -521, "B^-" },
00781 { 10521, "B*_0^+" },
00782 { -10521, "B*_0^-" },
00783 { 523, "B*^+" },
00784 { -523, "B*^-" },
00785 { 10523, "B_1(L)^+" },
00786 { -10523, "B_1(L)^-" },
00787 { 20523, "B_1(H)^+" },
00788 { -20523, "B_1(H)^-" },
00789 { 525, "B*_2^+" },
00790 { -525, "B*_2^-" },
00791 { 531, "B_s^0" },
00792 { -531, "B_s~^0" },
00793 { 10531, "B*_s0^0" },
00794 { -10531, "B*_s0~^0" },
00795 { 533, "B*_s^0" },
00796 { -533, "B*_s~^0" },
00797 { 10533, "B_s1(L)^0" },
00798 { -10533, "B_s1(L)~^0" },
00799 { 20533, "B_s1(H)^0" },
00800 { -20533, "B_s1(H)~^0" },
00801 { 535, "B*_s2^0" },
00802 { -535, "B*_s2~^0" },
00803 { 541, "B_c^+" },
00804 { -541, "B_c^-" },
00805 { 10541, "B*_c0^+" },
00806 { -10541, "B*_c0^-" },
00807 { 543, "B*_c^+" },
00808 { -543, "B*_c^-" },
00809 { 10543, "B_c1(L)^+" },
00810 { -10543, "B_c1(L)^-" },
00811 { 20543, "B_c1(H)^+" },
00812 { -20543, "B_c1(H)^-" },
00813 { 545, "B*_c2^+" },
00814 { -545, "B*_c2^-" },
00815 { 551, "eta_b(1S)" },
00816 { 10551, "chi_b0(1P)" },
00817 { 100551, "eta_b(2S)" },
00818 { 110551, "chi_b0(2P)" },
00819 { 200551, "eta_b(3S)" },
00820 { 210551, "chi_b0(3P)" },
00821 { 553, "Upsilon(1S)" },
00822 { 9000553, "Upsilon(10860)" },
00823 { 10553, "h_b(1P)" },
00824 { 9010553, "Upsilon(11020)" },
00825 { 20553, "chi_b1(1P)" },
00826 { 9020553, "Upsilon(7S)" },
00827 { 30553, "Upsilon_1(1D)" },
00828 { 100553, "Upsilon(2S)" },
00829 { 110553, "h_b(2P)" },
00830 { 120553, "chi_b1(2P)" },
00831 { 130553, "Upsilon_1(2D)" },
00832 { 200553, "Upsilon(3S)" },
00833 { 210553, "h_b(3P)" },
00834 { 220553, "chi_b1(3P)" },
00835 { 300553, "Upsilon(4S)" },
00836 { 555, "chi_b2(1P)" },
00837 { 10555, "eta_b2(1D)" },
00838 { 20555, "Upsilon_2(1D)" },
00839 { 100555, "chi_b2(2P)" },
00840 { 110555, "eta_b2(2D)" },
00841 { 120555, "Upsilon_2(2D)" },
00842 { 200555, "chi_b2(3P)" },
00843 { 557, "Upsilon_3(1D)" },
00844 { 100557, "Upsilon_3(2D)" },
00845 { 611, "T^+" },
00846 { -611, "T^-" },
00847 { 613, "T*^+" },
00848 { -613, "T*^-" },
00849 { 621, "T^0" },
00850 { -621, "T~^0" },
00851 { 623, "T*^0" },
00852 { -623, "T*~^0" },
00853 { 631, "T_s^+" },
00854 { -631, "T_s^-" },
00855 { 633, "T*_s^+" },
00856 { -633, "T*_s^-" },
00857 { 641, "T_c^0" },
00858 { -641, "T_c~^0" },
00859 { 643, "T*_c^0" },
00860 { -643, "T*_c~^0" },
00861 { 651, "T_b^+" },
00862 { -651, "T_b^-" },
00863 { 653, "T*_b^+" },
00864 { -653, "T*_b^-" },
00865 { 661, "eta_t" },
00866 { 663, "theta" },
00867 { 711, "L^0" },
00868 { -711, "L~^0" },
00869 { 713, "L*^0" },
00870 { -713, "L*~^0" },
00871 { 721, "L^-" },
00872 { -721, "L^+" },
00873 { 723, "L*^-" },
00874 { -723, "L*^+" },
00875 { 731, "L_s^0" },
00876 { -731, "L_s~^0" },
00877 { 733, "L*_s^0" },
00878 { -733, "L*_s~^0" },
00879 { 741, "L_c^-" },
00880 { -741, "L_c^+" },
00881 { 743, "L*_c^-" },
00882 { -743, "L*_c^+" },
00883 { 751, "L_b^0" },
00884 { -751, "L_b~^0" },
00885 { 753, "L*_b^0" },
00886 { -753, "L*_b~^0" },
00887 { 761, "L_t^-" },
00888 { -761, "L_t^+" },
00889 { 763, "L*_t^-" },
00890 { -763, "L*_t^+" },
00891 { 771, "eta_l" },
00892 { 773, "theta_l" },
00893 { 811, "X^+" },
00894 { -811, "X^-" },
00895 { 813, "X*^+" },
00896 { -813, "X*^-" },
00897 { 821, "X^0" },
00898 { -821, "X~^0" },
00899 { 823, "X*^0" },
00900 { -823, "X*~^0" },
00901 { 831, "X_s^+" },
00902 { -831, "X_s^-" },
00903 { 833, "X*_s^+" },
00904 { -833, "X*_s^-" },
00905 { 841, "X_c^0" },
00906 { -841, "X_c~^0" },
00907 { 843, "X*_c^0" },
00908 { -843, "X*_c~^0" },
00909 { 851, "X_b^+" },
00910 { -851, "X_b^-" },
00911 { 853, "X*_b^+" },
00912 { -853, "X*_b^-" },
00913 { 861, "X_t^0" },
00914 { -861, "X_t~^0" },
00915 { 863, "X*_t^0" },
00916 { -863, "X*_t~^0" },
00917 { 871, "X_l^+" },
00918 { -871, "X_l^-" },
00919 { 873, "X*_l^+" },
00920 { -873, "X*_l^-" },
00921 { 881, "eta_h" },
00922 { 883, "theta_H" },
00923 { 30343, "Xsd" },
00924 { -30343, "anti-Xsd" },
00925 { 30353, "Xsu" },
00926 { -30353, "anti-Xsu" },
00927 { 30363, "Xss" },
00928 { -30363, "anti-Xss" },
00929 { 30373, "Xdd" },
00930 { -30373, "anti-Xdd" },
00931 { 30383, "Xdu" },
00932 { -30383, "anti-Xdu" },
00933 { 2112, "n^0" },
00934 { -2112, "n~^0" },
00935 { 2212, "p^+" },
00936 { -2212, "p~^-" },
00937 { 12212, "N(1440)^+"},
00938 { 12112, "N(1440)^0"},
00939 { 22212, "N(1535)^+"},
00940 { 22112, "N(1535)^0"},
00941 { 32212, "N(1650)^+"},
00942 { 32112, "N(1650)^0"},
00943 { 42212, "N(1710)^+"},
00944 { 42112, "N(1710)^0"},
00945 { 1214, "N(1520)^0"},
00946 { 2124, "N(1520)^+"},
00947 { 21214, "N(1700)^0"},
00948 { 22124, "N(1700)^+"},
00949 { 31214, "N(1720)^0"},
00950 { 32124, "N(1720)^+"},
00951 { 2116, "N(1675)^0"},
00952 { 2216, "N(1675)^+"},
00953 { 12116, "N(1680)^0"},
00954 { 12216, "N(1680)^+"},
00955 { 1218, "N(2190)^0"},
00956 { 2128, "N(2190)^+" },
00957 { 1114, "Delta^-" },
00958 { -1114, "Delta~^+" },
00959 { 2114, "Delta^0" },
00960 { -2114, "Delta~^0" },
00961 { 2214, "Delta^+" },
00962 { -2214, "Delta~^-" },
00963 { 2224, "Delta^++" },
00964 { -2224, "Delta~^--" },
00965 { 31114, "Delta(1600)^-" },
00966 { 32114, "Delta(1600)^0" },
00967 { 32214, "Delta(1600)^+" },
00968 { 32224, "Delta(1600)^++" },
00969 { 1112, "Delta(1620)^-" },
00970 { 1212, "Delta(1620)^0" },
00971 { 2122, "Delta(1620)^+" },
00972 { 2222, "Delta(1620)^++" },
00973 { 11114, "Delta(1700)^-" },
00974 { 12114, "Delta(1700)^0" },
00975 { 12214, "Delta(1700)^+" },
00976 { 12224, "Delta(1700)^++" },
00977 { 1116, "Delta(1905)^-" },
00978 { 1216, "Delta(1905)^0" },
00979 { 2126, "Delta(1905)^+" },
00980 { 2226, "Delta(1905)^++" },
00981 { 21112, "Delta(1910)^-" },
00982 { 21212, "Delta(1910)^0" },
00983 { 22122, "Delta(1910)^+" },
00984 { 22222, "Delta(1910)^++" },
00985 { 21114, "Delta(1920)^-" },
00986 { 22114, "Delta(1920)^0" },
00987 { 22214, "Delta(1920)^+" },
00988 { 22224, "Delta(1920)^++" },
00989 { 11116, "Delta(1930)^-" },
00990 { 11216, "Delta(1930)^0" },
00991 { 12126, "Delta(1930)^+" },
00992 { 12226, "Delta(1930)^++" },
00993 { 1118, "Delta(1950)^-" },
00994 { 2118, "Delta(1950)^0" },
00995 { 2218, "Delta(1950)^+" },
00996 { 2228, "Delta(1950)^++" },
00997 { 3122, "Lambda^0" },
00998 { -3122, "Lambda~^0" },
00999 { 13122, "Lambda(1405)^0" },
01000 { -13122, "Lambda~(1405)^0" },
01001 { 23122, "Lambda(1600)^0" },
01002 { -23122, "Lambda~(1600)^0" },
01003 { 33122, "Lambda(1670)^0" },
01004 { -33122, "Lambda~(1670)^0" },
01005 { 43122, "Lambda(1800)^0" },
01006 { -43122, "Lambda~(1800)^0" },
01007 { 53122, "Lambda(1810)^0" },
01008 { -53122, "Lambda~(1810)^0" },
01009 { 3124, "Lambda(1520)^0" },
01010 { -3124, "Lambda~(1520)^0" },
01011 { 13124, "Lambda(1690)^0" },
01012 { -13124, "Lambda~(1690)^0" },
01013 { 23124, "Lambda(1890)^0" },
01014 { -23124, "Lambda~(1890)^0" },
01015 { 3126, "Lambda(1820)^0" },
01016 { -3126, "Lambda~(1820)^0" },
01017 { 13126, "Lambda(1830)^0" },
01018 { -13126, "Lambda~(1830)^0" },
01019 { 23126, "Lambda(2110)^0" },
01020 { -23126, "Lambda~(2110)^0" },
01021 { 3128, "Lambda(2100)^0" },
01022 { -3128, "Lambda~(2100)^0" },
01023 { 3112, "Sigma^-" },
01024 { -3112, "Sigma~^+" },
01025 { 3212, "Sigma^0" },
01026 { -3212, "Sigma~^0" },
01027 { 3222, "Sigma^+" },
01028 { -3222, "Sigma~^-" },
01029 { 13222, "Sigma(1660)^+" },
01030 { -13222, "Sigma~(1660)^+" },
01031 { 13212, "Sigma(1660)^0" },
01032 { -13212, "Sigma~(1660)^0" },
01033 { 13112, "Sigma(1660)^-" },
01034 { -13112, "Sigma~(1660)^-" },
01035 { 23112, "Sigma(1750)^-" },
01036 { -23112, "Sigma~(1750)^-" },
01037 { 23212, "Sigma(1750)^0" },
01038 { -23212, "Sigma~(1750)^0" },
01039 { 23222, "Sigma(1750)^+" },
01040 { -23222, "Sigma~(1750)^+" },
01041 { 3114, "Sigma*^-" },
01042 { -3114, "Sigma*~^+" },
01043 { 3214, "Sigma*^0" },
01044 { -3214, "Sigma*~^0" },
01045 { 3224, "Sigma*^+" },
01046 { -3224, "Sigma*~^-" },
01047 { 13224, "Sigma(1670)^+" },
01048 { -13224, "Sigma~(1670)^+" },
01049 { 13214, "Sigma(1670)^0" },
01050 { -13214, "Sigma~(1670)^0" },
01051 { 13114, "Sigma(1670)^-" },
01052 { -13114, "Sigma~(1670)^-" },
01053 { 23224, "Sigma(1940)^+" },
01054 { -23224, "Sigma~(1940)^+" },
01055 { 23214, "Sigma(1940)^0" },
01056 { -23214, "Sigma~(1940)^0" },
01057 { 23114, "Sigma(1940)^-" },
01058 { -23114, "Sigma~(1940)^-" },
01059 { 3226, "Sigma(1775)^+" },
01060 { -3226, "Sigma~(1775)^+" },
01061 { 3216, "Sigma(1775)^0" },
01062 { -3216, "Sigma~(1775)^0" },
01063 { 3116, "Sigma(1775)^-" },
01064 { -3116, "Sigma~(1775)^-" },
01065 { 13226, "Sigma(1915)^+" },
01066 { -13226, "Sigma~(1915)^+" },
01067 { 13216, "Sigma(1915)^0" },
01068 { -13216, "Sigma~(1915)^0" },
01069 { 13116, "Sigma(1915)^-" },
01070 { -13116, "Sigma~(1915)^-" },
01071 { 3228, "Sigma(2030)^+" },
01072 { -3228, "Sigma~(2030)^+" },
01073 { 3218, "Sigma(2030)^0" },
01074 { -3218, "Sigma~(2030)^0" },
01075 { 3118, "Sigma(2030)^-" },
01076 { -3118, "Sigma~(2030)^-" },
01077 { 3312, "Xi^-" },
01078 { -3312, "Xi~^+" },
01079 { 3322, "Xi^0" },
01080 { -3322, "Xi~^0" },
01081 { 3314, "Xi*^-" },
01082 { -3314, "Xi*~^+" },
01083 { 3324, "Xi*^0" },
01084 { -3324, "Xi*~^0" },
01085 { 13314, "Xi(1820)^-" },
01086 { -13314, "Xi(1820)~^+" },
01087 { 13324, "Xi(1820)^0" },
01088 { -13324, "Xi(1820)~^0" },
01089 { 3334, "Omega^-" },
01090 { -3334, "Omega~^+" },
01091 { 4112, "Sigma_c^0" },
01092 { -4112, "Sigma_c~^0" },
01093 { 4114, "Sigma*_c^0" },
01094 { -4114, "Sigma*_c~^0" },
01095 { 4122, "Lambda_c^+" },
01096 { -4122, "Lambda_c~^-" },
01097 { 14122, "Lambda_c(2593)^+" },
01098 { -14122, "Lambda_c~(2593)^-" },
01099 { 14124, "Lambda_c(2625)^+" },
01100 { -14124, "Lambda_c~(2625)^-" },
01101 { 4132, "Xi_c^0" },
01102 { -4132, "Xi_c~^0" },
01103 { 4212, "Sigma_c^+" },
01104 { -4212, "Sigma_c~^-" },
01105 { 4214, "Sigma*_c^+" },
01106 { -4214, "Sigma*_c~^-" },
01107 { 4222, "Sigma_c^++" },
01108 { -4222, "Sigma_c~^--" },
01109 { 4224, "Sigma*_c^++" },
01110 { -4224, "Sigma*_c~^--" },
01111 { 4232, "Xi_c^+" },
01112 { -4232, "Xi_c~^-" },
01113 { 4312, "Xi'_c^0" },
01114 { -4312, "Xi'_c~^0" },
01115 { 4314, "Xi*_c^0" },
01116 { -4314, "Xi*_c~^0" },
01117 { 4322, "Xi'_c^+" },
01118 { -4322, "Xi'_c~^-" },
01119 { 4324, "Xi*_c^+" },
01120 { -4324, "Xi*_c~^-" },
01121 { 4332, "Omega_c^0" },
01122 { -4332, "Omega_c~^0" },
01123 { 4334, "Omega*_c^0" },
01124 { -4334, "Omega*_c~^0" },
01125 { 4412, "Xi_cc^+" },
01126 { -4412, "Xi_cc~^-" },
01127 { 4414, "Xi*_cc^+" },
01128 { -4414, "Xi*_cc~^-" },
01129 { 4422, "Xi_cc^++" },
01130 { -4422, "Xi_cc~^--" },
01131 { 4424, "Xi*_cc^++" },
01132 { -4424, "Xi*_cc~^--" },
01133 { 4432, "Omega_cc^+" },
01134 { -4432, "Omega_cc~^-" },
01135 { 4434, "Omega*_cc^+" },
01136 { -4434, "Omega*_cc~^-" },
01137 { 4444, "Omega*_ccc^++" },
01138 { -4444, "Omega*_ccc~^--" },
01139 { 5112, "Sigma_b^-" },
01140 { -5112, "Sigma_b~^+" },
01141 { 5114, "Sigma*_b^-" },
01142 { -5114, "Sigma*_b~^+" },
01143 { 5122, "Lambda_b^0" },
01144 { -5122, "Lambda_b~^0" },
01145 { 5132, "Xi_b^-" },
01146 { -5132, "Xi_b~^+" },
01147 { 5142, "Xi_bc^0" },
01148 { -5142, "Xi_bc~^0" },
01149 { 5212, "Sigma_b^0" },
01150 { -5212, "Sigma_b~^0" },
01151 { 5214, "Sigma*_b^0" },
01152 { -5214, "Sigma*_b~^0" },
01153 { 5222, "Sigma_b^+" },
01154 { -5222, "Sigma_b~^-" },
01155 { 5224, "Sigma*_b^+" },
01156 { -5224, "Sigma*_b~^-" },
01157 { 5232, "Xi_b^0" },
01158 { -5232, "Xi_b~^0" },
01159 { 5242, "Xi_bc^+" },
01160 { -5242, "Xi_bc~^-" },
01161 { 5312, "Xi'_b^-" },
01162 { -5312, "Xi'_b~^+" },
01163 { 5314, "Xi*_b^-" },
01164 { -5314, "Xi*_b~^+" },
01165 { 5322, "Xi'_b^0" },
01166 { -5322, "Xi'_b~^0" },
01167 { 5324, "Xi*_b^0" },
01168 { -5324, "Xi*_b~^0" },
01169 { 5332, "Omega_b^-" },
01170 { -5332, "Omega_b~^+" },
01171 { 5334, "Omega*_b^-" },
01172 { -5334, "Omega*_b~^+" },
01173 { 5342, "Omega_bc^0" },
01174 { -5342, "Omega_bc~^0" },
01175 { 5412, "Xi'_bc^0" },
01176 { -5412, "Xi'_bc~^0" },
01177 { 5414, "Xi*_bc^0" },
01178 { -5414, "Xi*_bc~^0" },
01179 { 5422, "Xi'_bc^+" },
01180 { -5422, "Xi'_bc~^-" },
01181 { 5424, "Xi*_bc^+" },
01182 { -5424, "Xi*_bc~^-" },
01183 { 5432, "Omega'_bc^0" },
01184 { -5432, "Omega'_bc~^0" },
01185 { 5434, "Omega*_bc^0" },
01186 { -5434, "Omega*_bc~^0" },
01187 { 5442, "Omega_bcc^+" },
01188 { -5442, "Omega_bcc~^-" },
01189 { 5444, "Omega*_bcc^+" },
01190 { -5444, "Omega*_bcc~^-" },
01191 { 5512, "Xi_bb^-" },
01192 { -5512, "Xi_bb~^+" },
01193 { 5514, "Xi*_bb^-" },
01194 { -5514, "Xi*_bb~^+" },
01195 { 5522, "Xi_bb^0" },
01196 { -5522, "Xi_bb~^0" },
01197 { 5524, "Xi*_bb^0" },
01198 { -5524, "Xi*_bb~^0" },
01199 { 5532, "Omega_bb^-" },
01200 { -5532, "Omega_bb~^+" },
01201 { 5534, "Omega*_bb^-" },
01202 { -5534, "Omega*_bb~^+" },
01203 { 5542, "Omega_bbc^0" },
01204 { -5542, "Omega_bbc~^0" },
01205 { 5544, "Omega*_bbc^0" },
01206 { -5544, "Omega*_bbc~^0" },
01207 { 5554, "Omega*_bbb^-" },
01208 { -5554, "Omega*_bbb~^+" },
01209 { 6112, "Sigma_t^0" },
01210 { -6112, "Sigma_t~^0" },
01211 { 6114, "Sigma*_t^0" },
01212 { -6114, "Sigma*_t~^0" },
01213 { 6122, "Lambda_t^+" },
01214 { -6122, "Lambda_t~^-" },
01215 { 6132, "Xi_t^0" },
01216 { -6132, "Xi_t~^0" },
01217 { 6142, "Xi_tc^+" },
01218 { -6142, "Xi_tc~^-" },
01219 { 6152, "Xi_tb^0" },
01220 { -6152, "Xi_tb~^0" },
01221 { 6212, "Sigma_t^+" },
01222 { -6212, "Sigma_t~^-" },
01223 { 6214, "Sigma*_t^+" },
01224 { -6214, "Sigma*_t~^-" },
01225 { 6222, "Sigma_t^++" },
01226 { -6222, "Sigma_t~^--" },
01227 { 6224, "Sigma*_t^++" },
01228 { -6224, "Sigma*_t~^--" },
01229 { 6232, "Xi_t^+" },
01230 { -6232, "Xi_t~^-" },
01231 { 6242, "Xi_tc^++" },
01232 { -6242, "Xi_tc~^--" },
01233 { 6252, "Xi_tb^+" },
01234 { -6252, "Xi_tb~^-" },
01235 { 6312, "Xi'_t^0" },
01236 { -6312, "Xi'_t~^0" },
01237 { 6314, "Xi*_t^0" },
01238 { -6314, "Xi*_t~^0" },
01239 { 6322, "Xi'_t^+" },
01240 { -6322, "Xi'_t~^-" },
01241 { 6324, "Xi*_t^+" },
01242 { -6324, "Xi*_t~^-" },
01243 { 6332, "Omega_t^0" },
01244 { -6332, "Omega_t~^0" },
01245 { 6334, "Omega*_t^0" },
01246 { -6334, "Omega*_t~^0" },
01247 { 6342, "Omega_tc^+" },
01248 { -6342, "Omega_tc~^-" },
01249 { 6352, "Omega_tb^0" },
01250 { -6352, "Omega_tb~^0" },
01251 { 6412, "Xi'_tc^+" },
01252 { -6412, "Xi'_tc~^-" },
01253 { 6414, "Xi*_tc^+" },
01254 { -6414, "Xi*_tc~^-" },
01255 { 6422, "Xi'_tc^++" },
01256 { -6422, "Xi'_tc~^--" },
01257 { 6424, "Xi*_tc^++" },
01258 { -6424, "Xi*_tc~^--" },
01259 { 6432, "Omega'_tc^+" },
01260 { -6432, "Omega'_tc~^-" },
01261 { 6434, "Omega*_tc^+" },
01262 { -6434, "Omega*_tc~^-" },
01263 { 6442, "Omega_tcc^++" },
01264 { -6442, "Omega_tcc~^--" },
01265 { 6444, "Omega*_tcc^++" },
01266 { -6444, "Omega*_tcc~^--" },
01267 { 6452, "Omega_tbc^+" },
01268 { -6452, "Omega_tbc~^-" },
01269 { 6512, "Xi'_tb^0" },
01270 { -6512, "Xi'_tb~^0" },
01271 { 6514, "Xi*_tb^0" },
01272 { -6514, "Xi*_tb~^0" },
01273 { 6522, "Xi'_tb^+" },
01274 { -6522, "Xi'_tb~^-" },
01275 { 6524, "Xi*_tb^+" },
01276 { -6524, "Xi*_tb~^-" },
01277 { 6532, "Omega'_tb^0" },
01278 { -6532, "Omega'_tb~^0" },
01279 { 6534, "Omega*_tb^0" },
01280 { -6534, "Omega*_tb~^0" },
01281 { 6542, "Omega'_tbc^+" },
01282 { -6542, "Omega'_tbc~^-" },
01283 { 6544, "Omega*_tbc^+" },
01284 { -6544, "Omega*_tbc~^-" },
01285 { 6552, "Omega_tbb^0" },
01286 { -6552, "Omega_tbb~^0" },
01287 { 6554, "Omega*_tbb^0" },
01288 { -6554, "Omega*_tbb~^0" },
01289 { 6612, "Xi_tt^+" },
01290 { -6612, "Xi_tt~^-" },
01291 { 6614, "Xi*_tt^+" },
01292 { -6614, "Xi*_tt~^-" },
01293 { 6622, "Xi_tt^++" },
01294 { -6622, "Xi_tt~^--" },
01295 { 6624, "Xi*_tt^++" },
01296 { -6624, "Xi*_tt~^--" },
01297 { 6632, "Omega_tt^+" },
01298 { -6632, "Omega_tt~^-" },
01299 { 6634, "Omega*_tt^+" },
01300 { -6634, "Omega*_tt~^-" },
01301 { 6642, "Omega_ttc^++" },
01302 { -6642, "Omega_ttc~^--" },
01303 { 6644, "Omega*_ttc^++" },
01304 { -6644, "Omega*_ttc~^--" },
01305 { 6652, "Omega_ttb^+" },
01306 { -6652, "Omega_ttb~^-" },
01307 { 6654, "Omega*_ttb^+" },
01308 { -6654, "Omega*_ttb~^-" },
01309 { 6664, "Omega*_ttt^++" },
01310 { -6664, "Omega*_ttt~^--" },
01311 { 7112, "Sigma_b'^-" },
01312 { -7112, "Sigma_b'~^+" },
01313 { 7114, "Sigma*_b'^-" },
01314 { -7114, "Sigma*_b'~^+" },
01315 { 7122, "Lambda_b'^0" },
01316 { -7122, "Lambda_b'~^0" },
01317 { 7132, "Xi_b'^-" },
01318 { -7132, "Xi_b'~^+" },
01319 { 7142, "Xi_b'c^0" },
01320 { -7142, "Xi_b'c~^0" },
01321 { 7152, "Xi_b'b^-" },
01322 { -7152, "Xi_b'b~^+" },
01323 { 7162, "Xi_b't^0" },
01324 { -7162, "Xi_b't~^0" },
01325 { 7212, "Sigma_b'^0" },
01326 { -7212, "Sigma_b'~^0" },
01327 { 7214, "Sigma*_b'^0" },
01328 { -7214, "Sigma*_b'~^0" },
01329 { 7222, "Sigma_b'^+" },
01330 { -7222, "Sigma_b'~^-" },
01331 { 7224, "Sigma*_b'^+" },
01332 { -7224, "Sigma*_b'~^-" },
01333 { 7232, "Xi_b'^0" },
01334 { -7232, "Xi_b'~^0" },
01335 { 7242, "Xi_b'c^+" },
01336 { -7242, "Xi_b'c~^-" },
01337 { 7252, "Xi_b'b^0" },
01338 { -7252, "Xi_b'b~^0" },
01339 { 7262, "Xi_b't^+" },
01340 { -7262, "Xi_b't~^-" },
01341 { 7312, "Xi'_b'^-" },
01342 { -7312, "Xi'_b'~^+" },
01343 { 7314, "Xi*_b'^-" },
01344 { -7314, "Xi*_b'~^+" },
01345 { 7322, "Xi'_b'^0" },
01346 { -7322, "Xi'_b'~^0" },
01347 { 7324, "Xi*_b'^0" },
01348 { -7324, "Xi*_b'~^0" },
01349 { 7332, "Omega'_b'^-" },
01350 { -7332, "Omega'_b'~^+" },
01351 { 7334, "Omega*_b'^-" },
01352 { -7334, "Omega*_b'~^+" },
01353 { 7342, "Omega_b'c^0" },
01354 { -7342, "Omega_b'c~^0" },
01355 { 7352, "Omega_b'b^-" },
01356 { -7352, "Omega_b'b~^+" },
01357 { 7362, "Omega_b't^0" },
01358 { -7362, "Omega_b't~^0" },
01359 { 7412, "Xi'_b'c^0" },
01360 { -7412, "Xi'_b'c~^0" },
01361 { 7414, "Xi*_b'c^0" },
01362 { -7414, "Xi*_b'c~^0" },
01363 { 7422, "Xi'_b'c^+" },
01364 { -7422, "Xi'_b'c~^-" },
01365 { 7424, "Xi*_b'c^+" },
01366 { -7424, "Xi*_b'c~^-" },
01367 { 7432, "Omega'_b'c^0" },
01368 { -7432, "Omega'_b'c~^0" },
01369 { 7434, "Omega*_b'c^0" },
01370 { -7434, "Omega*_b'c~^0" },
01371 { 7442, "Omega'_b'cc^+" },
01372 { -7442, "Omega'_b'cc~^-" },
01373 { 7444, "Omega*_b'cc^+" },
01374 { -7444, "Omega*_b'cc~^-" },
01375 { 7452, "Omega_b'bc^0" },
01376 { -7452, "Omega_b'bc~^0" },
01377 { 7462, "Omega_b'tc^+" },
01378 { -7462, "Omega_b'tc~^-" },
01379 { 7512, "Xi'_b'b^-" },
01380 { -7512, "Xi'_b'b~^+" },
01381 { 7514, "Xi*_b'b^-" },
01382 { -7514, "Xi*_b'b~^+" },
01383 { 7522, "Xi'_b'b^0" },
01384 { -7522, "Xi'_b'b~^0" },
01385 { 7524, "Xi*_b'b^0" },
01386 { -7524, "Xi*_b'b~^0" },
01387 { 7532, "Omega'_b'b^-" },
01388 { -7532, "Omega'_b'b~^+" },
01389 { 7534, "Omega*_b'b^-" },
01390 { -7534, "Omega*_b'b~^+" },
01391 { 7542, "Omega'_b'bc^0" },
01392 { -7542, "Omega'_b'bc~^0" },
01393 { 7544, "Omega*_b'bc^0" },
01394 { -7544, "Omega*_b'bc~^0" },
01395 { 7552, "Omega'_b'bb^-" },
01396 { -7552, "Omega'_b'bb~^+" },
01397 { 7554, "Omega*_b'bb^-" },
01398 { -7554, "Omega*_b'bb~^+" },
01399 { 7562, "Omega_b'tb^0" },
01400 { -7562, "Omega_b'tb~^0" },
01401 { 7612, "Xi'_b't^0" },
01402 { -7612, "Xi'_b't~^0" },
01403 { 7614, "Xi*_b't^0" },
01404 { -7614, "Xi*_b't~^0" },
01405 { 7622, "Xi'_b't^+" },
01406 { -7622, "Xi'_b't~^-" },
01407 { 7624, "Xi*_b't^+" },
01408 { -7624, "Xi*_b't~^-" },
01409 { 7632, "Omega'_b't^0" },
01410 { -7632, "Omega'_b't~^0" },
01411 { 7634, "Omega*_b't^0" },
01412 { -7634, "Omega*_b't~^0" },
01413 { 7642, "Omega'_b'tc^+" },
01414 { -7642, "Omega'_b'tc~^-" },
01415 { 7644, "Omega*_b'tc^+" },
01416 { -7644, "Omega*_b'tc~^-" },
01417 { 7652, "Omega'_b'tb^0" },
01418 { -7652, "Omega'_b'tb~^0" },
01419 { 7654, "Omega*_b'tb^0" },
01420 { -7654, "Omega*_b'tb~^0" },
01421 { 7662, "Omega'_b'tt^+" },
01422 { -7662, "Omega'_b'tt~^-" },
01423 { 7664, "Omega*_b'tt^+" },
01424 { -7664, "Omega*_b'tt~^-" },
01425 { 7712, "Xi'_b'b'^-" },
01426 { -7712, "Xi'_b'b'~^+" },
01427 { 7714, "Xi*_b'b'^-" },
01428 { -7714, "Xi*_b'b'~^+" },
01429 { 7722, "Xi'_b'b'^0" },
01430 { -7722, "Xi'_b'b'~^0" },
01431 { 7724, "Xi*_b'b'^0" },
01432 { -7724, "Xi*_b'b'~^0" },
01433 { 7732, "Omega'_b'b'^-" },
01434 { -7732, "Omega'_b'b'~^+" },
01435 { 7734, "Omega*_b'b'^-" },
01436 { -7734, "Omega*_b'b'~^+" },
01437 { 7742, "Omega'_b'b'c^0" },
01438 { -7742, "Omega'_b'b'c~^0" },
01439 { 7744, "Omega*_b'b'c^0" },
01440 { -7744, "Omega*_b'b'c~^0" },
01441 { 7752, "Omega'_b'b'b^-" },
01442 { -7752, "Omega'_b'b'b~^+" },
01443 { 7754, "Omega*_b'b'b^-" },
01444 { -7754, "Omega*_b'b'b~^+" },
01445 { 7762, "Omega'_b'b't^0" },
01446 { -7762, "Omega'_b'b't~^0" },
01447 { 7764, "Omega*_b'b't^0" },
01448 { -7764, "Omega*_b'b't~^0" },
01449 { 7774, "Omega*_b'b'b'^-" },
01450 { -7774, "Omega*_b'b'b'~^+" },
01451 { 8112, "Sigma_t'^0" },
01452 { -8112, "Sigma_t'~^0" },
01453 { 8114, "Sigma*_t'^0" },
01454 { -8114, "Sigma*_t'~^0" },
01455 { 8122, "Lambda_t'^+" },
01456 { -8122, "Lambda_t'~^-" },
01457 { 8132, "Xi_t'^0" },
01458 { -8132, "Xi_t'~^0" },
01459 { 8142, "Xi_t'c^+" },
01460 { -8142, "Xi_t'c~^-" },
01461 { 8152, "Xi_t'b^0" },
01462 { -8152, "Xi_t'b~^0" },
01463 { 8162, "Xi_t't^+" },
01464 { -8162, "Xi_t't~^-" },
01465 { 8172, "Xi_t'b'^0" },
01466 { -8172, "Xi_t'b'~^0" },
01467 { 8212, "Sigma_t'^+" },
01468 { -8212, "Sigma_t'~^-" },
01469 { 8214, "Sigma*_t'^+" },
01470 { -8214, "Sigma*_t'~^-" },
01471 { 8222, "Sigma_t'^++" },
01472 { -8222, "Sigma_t'~^--" },
01473 { 8224, "Sigma*_t'^++" },
01474 { -8224, "Sigma*_t'~^--" },
01475 { 8232, "Xi_t'^+" },
01476 { -8232, "Xi_t'~^-" },
01477 { 8242, "Xi_t'c^++" },
01478 { -8242, "Xi_t'c~^--" },
01479 { 8252, "Xi_t'b^+" },
01480 { -8252, "Xi_t'b~^-" },
01481 { 8262, "Xi_t't^++" },
01482 { -8262, "Xi_t't~^--" },
01483 { 8272, "Xi_t'b'^+" },
01484 { -8272, "Xi_t'b'~^-" },
01485 { 8312, "Xi'_t'^0" },
01486 { -8312, "Xi'_t'~^0" },
01487 { 8314, "Xi*_t'^0" },
01488 { -8314, "Xi*_t'~^0" },
01489 { 8322, "Xi'_t'^+" },
01490 { -8322, "Xi'_t'~^-" },
01491 { 8324, "Xi*_t'^+" },
01492 { -8324, "Xi*_t'~^-" },
01493 { 8332, "Omega'_t'^0" },
01494 { -8332, "Omega'_t'~^0" },
01495 { 8334, "Omega*_t'^0" },
01496 { -8334, "Omega*_t'~^0" },
01497 { 8342, "Omega_t'c^+" },
01498 { -8342, "Omega_t'c~^-" },
01499 { 8352, "Omega_t'b^0" },
01500 { -8352, "Omega_t'b~^0" },
01501 { 8362, "Omega_t't^+" },
01502 { -8362, "Omega_t't~^-" },
01503 { 8372, "Omega_t'b'^0" },
01504 { -8372, "Omega_t'b'~^0" },
01505 { 8412, "Xi'_t'c^+" },
01506 { -8412, "Xi'_t'c~^-" },
01507 { 8414, "Xi*_t'c^+" },
01508 { -8414, "Xi*_t'c~^-" },
01509 { 8422, "Xi'_t'c^++" },
01510 { -8422, "Xi'_t'c~^--" },
01511 { 8424, "Xi*_t'c^++" },
01512 { -8424, "Xi*_t'c~^--" },
01513 { 8432, "Omega'_t'c^+" },
01514 { -8432, "Omega'_t'c~^-" },
01515 { 8434, "Omega*_t'c^+" },
01516 { -8434, "Omega*_t'c~^-" },
01517 { 8442, "Omega'_t'cc^++" },
01518 { -8442, "Omega'_t'cc~^--" },
01519 { 8444, "Omega*_t'cc^++" },
01520 { -8444, "Omega*_t'cc~^--" },
01521 { 8452, "Omega_t'bc^+" },
01522 { -8452, "Omega_t'bc~^-" },
01523 { 8462, "Omega_t'tc^++" },
01524 { -8462, "Omega_t'tc~^--" },
01525 { 8472, "Omega_t'b'c ^+" },
01526 { -8472, "Omega_t'b'c ~^-" },
01527 { 8512, "Xi'_t'b^0" },
01528 { -8512, "Xi'_t'b~^0" },
01529 { 8514, "Xi*_t'b^0" },
01530 { -8514, "Xi*_t'b~^0" },
01531 { 8522, "Xi'_t'b^+" },
01532 { -8522, "Xi'_t'b~^-" },
01533 { 8524, "Xi*_t'b^+" },
01534 { -8524, "Xi*_t'b~^-" },
01535 { 8532, "Omega'_t'b^0" },
01536 { -8532, "Omega'_t'b~^0" },
01537 { 8534, "Omega*_t'b^0" },
01538 { -8534, "Omega*_t'b~^0" },
01539 { 8542, "Omega'_t'bc^+" },
01540 { -8542, "Omega'_t'bc~^-" },
01541 { 8544, "Omega*_t'bc^+" },
01542 { -8544, "Omega*_t'bc~^-" },
01543 { 8552, "Omega'_t'bb^0" },
01544 { -8552, "Omega'_t'bb~^0" },
01545 { 8554, "Omega*_t'bb^0" },
01546 { -8554, "Omega*_t'bb~^0" },
01547 { 8562, "Omega_t'tb^+" },
01548 { -8562, "Omega_t'tb~^-" },
01549 { 8572, "Omega_t'b'b ^0" },
01550 { -8572, "Omega_t'b'b ~^0" },
01551 { 8612, "Xi'_t't^+" },
01552 { -8612, "Xi'_t't~^-" },
01553 { 8614, "Xi*_t't^+" },
01554 { -8614, "Xi*_t't~^-" },
01555 { 8622, "Xi'_t't^++" },
01556 { -8622, "Xi'_t't~^--" },
01557 { 8624, "Xi*_t't^++" },
01558 { -8624, "Xi*_t't~^--" },
01559 { 8632, "Omega'_t't^+" },
01560 { -8632, "Omega'_t't~^-" },
01561 { 8634, "Omega*_t't^+" },
01562 { -8634, "Omega*_t't~^-" },
01563 { 8642, "Omega'_t'tc^++" },
01564 { -8642, "Omega'_t'tc~^--" },
01565 { 8644, "Omega*_t'tc^++" },
01566 { -8644, "Omega*_t'tc~^--" },
01567 { 8652, "Omega'_t'tb^+" },
01568 { -8652, "Omega'_t'tb~^-" },
01569 { 8654, "Omega*_t'tb^+" },
01570 { -8654, "Omega*_t'tb~^-" },
01571 { 8662, "Omega'_t'tt^++" },
01572 { -8662, "Omega'_t'tt~^--" },
01573 { 8664, "Omega*_t'tt^++" },
01574 { -8664, "Omega*_t'tt~^--" },
01575 { 8672, "Omega_t'b't ^+" },
01576 { -8672, "Omega_t'b't ~^-" },
01577 { 8712, "Xi'_t'b'^0" },
01578 { -8712, "Xi'_t'b'~^0" },
01579 { 8714, "Xi*_t'b'^0" },
01580 { -8714, "Xi*_t'b'~^0" },
01581 { 8722, "Xi'_t'b'^+" },
01582 { -8722, "Xi'_t'b'~^-" },
01583 { 8724, "Xi*_t'b'^+" },
01584 { -8724, "Xi*_t'b'~^-" },
01585 { 8732, "Omega'_t'b'^0" },
01586 { -8732, "Omega'_t'b'~^0" },
01587 { 8734, "Omega*_t'b'^0" },
01588 { -8734, "Omega*_t'b'~^0" },
01589 { 8742, "Omega'_t'b'c^+" },
01590 { -8742, "Omega'_t'b'c~^-" },
01591 { 8744, "Omega*_t'b'c^+" },
01592 { -8744, "Omega*_t'b'c~^-" },
01593 { 8752, "Omega'_t'b'b^0" },
01594 { -8752, "Omega'_t'b'b~^0" },
01595 { 8754, "Omega*_t'b'b^0" },
01596 { -8754, "Omega*_t'b'b~^0" },
01597 { 8762, "Omega'_t'b't^+" },
01598 { -8762, "Omega'_t'b't~^-" },
01599 { 8764, "Omega*_t'b't^+" },
01600 { -8764, "Omega*_t'b't~^-" },
01601 { 8772, "Omega'_t'b'b'^0" },
01602 { -8772, "Omega'_t'b'b'~^0" },
01603 { 8774, "Omega*_t'b'b'^0" },
01604 { -8774, "Omega*_t'b'b'~^0" },
01605 { 8812, "Xi'_t't'^+" },
01606 { -8812, "Xi'_t't'~^-" },
01607 { 8814, "Xi*_t't'^+" },
01608 { -8814, "Xi*_t't'~^-" },
01609 { 8822, "Xi'_t't'^++" },
01610 { -8822, "Xi'_t't'~^--" },
01611 { 8824, "Xi*_t't'^++" },
01612 { -8824, "Xi*_t't'~^--" },
01613 { 8832, "Omega'_t't'^+" },
01614 { -8832, "Omega'_t't'~^-" },
01615 { 8834, "Omega*_t't'^+" },
01616 { -8834, "Omega*_t't'~^-" },
01617 { 8842, "Omega'_t't'c^++" },
01618 { -8842, "Omega'_t't'c~^--" },
01619 { 8844, "Omega*_t't'c^++" },
01620 { -8844, "Omega*_t't'c~^--" },
01621 { 8852, "Omega'_t't'b^+" },
01622 { -8852, "Omega'_t't'b~^-" },
01623 { 8854, "Omega*_t't'b^+" },
01624 { -8854, "Omega*_t't'b~^-" },
01625 { 8862, "Omega'_t't't^++" },
01626 { -8862, "Omega'_t't't~^--" },
01627 { 8864, "Omega*_t't't^++" },
01628 { -8864, "Omega*_t't't~^--" },
01629 { 8872, "Omega'_t't'b'^+" },
01630 { -8872, "Omega'_t't'b'~^-" },
01631 { 8874, "Omega*_t't'b'^+" },
01632 { -8874, "Omega*_t't'b'~^-" },
01633 { 8884, "Omega*_t't't'^++" },
01634 { -8884, "Omega*_t't't'~^--" },
01635 { 9221132, "Theta^+" },
01636 { 9331122, "Phi^--" },
01637 { 1000993, "R_~gg^0" },
01638 { 1009113, "R_~gd~d^0" },
01639 { 1009213, "R_~gu~d^+" },
01640 { 1009223, "R_~gu~u^0" },
01641 { 1009313, "R_~gd~s^0" },
01642 { 1009323, "R_~gu~s^+" },
01643 { 1009333, "R_~gs~s^0" },
01644 { 1091114, "R_~gddd^-" },
01645 { 1092114, "R_~gudd^0" },
01646 { 1092214, "R_~guud^+" },
01647 { 1092224, "R_~guuu^++" },
01648 { 1093114, "R_~gsdd^-" },
01649 { 1093214, "R_~gsud^0" },
01650 { 1093224, "R_~gsuu^+" },
01651 { 1093314, "R_~gssd^-" },
01652 { 1093324, "R_~gssu^0" },
01653 { 1093334, "R_~gsss^-" },
01654 { 1000612, "R_~t_1~d^+" },
01655 { 1000622, "R_~t_1~u^0" },
01656 { 1000632, "R_~t_1~s^+" },
01657 { 1000642, "R_~t_1~c^0" },
01658 { 1000652, "R_~t_1~b^+" },
01659 { 1006113, "R_~t_1dd_1^0" },
01660 { 1006211, "R_~t_1ud_0^+" },
01661 { 1006213, "R_~t_1ud_1^+" },
01662 { 1006223, "R_~t_1uu_1^++" },
01663 { 1006311, "R_~t_1sd_0^0" },
01664 { 1006313, "R_~t_1sd_1^0" },
01665 { 1006321, "R_~t_1su_0^+" },
01666 { 1006323, "R_~t_1su_1^+" },
01667 { 1006333, "R_~t_1ss_1^0" },
01668 { 1000010010, "Hydrogen" },
01669 { 1000010020, "Deuterium" },
01670 {-1000010020, "Anti-Deuterium" },
01671 { 1000010030, "Tritium" },
01672 {-1000010030, "Anti-Tritium" },
01673 { 1000020030, "He3" },
01674 {-1000020030, "Anti-He3" },
01675 { 1000020040, "Alpha-(He4)" },
01676 {-1000020040, "Anti-Alpha-(He4)" }
01677 };
01678
01679 int lnames = sizeof(SNames)/sizeof(SNames[0]);
01680 for( int k=0; k!=lnames; ++k) {
01681 m.insert( std::make_pair( SNames[k].pid, std::string(SNames[k].pname)) );
01682 nameMap.insert( std::make_pair( std::string(SNames[k].pname), SNames[k].pid ) );
01683 }
01684 static ParticleNameMap mymaps(m,nameMap);
01685
01686 return mymaps;
01687 }
01688
01689 void writeParticleNameLine( int i, std::ostream & os )
01690 {
01691 if ( validParticleName( i ) ) {
01692 std::string pn = particleName( i );
01693 int pid = particleName( pn );
01694 os << " PDT number: " ;
01695 os.width(12);
01696 os << i << " PDT name: " << pn << std::endl;
01697
01698 if( pid != i ) {
01699 os << "HepPID::writeParticleNameLine ERROR: "
01700 << " got " << pid << " instead of " << i << std::endl;
01701 }
01702 }
01703 return;
01704 }
01705
01706 std::string dyonName( const int & pid )
01707 {
01708 std::ostringstream pn;
01709 pn << "Dyon^" << digit(nq1,pid) << digit(nq2,pid) << digit(nq3,pid);
01710 if ( digit(nl,pid) == 1 ) {
01711 if ( pid > 0 ) {
01712 pn << "++";
01713 } else {
01714 pn << "--";
01715 }
01716 } else if ( digit(nl,pid) == 2 ) {
01717 if ( pid > 0 ) {
01718 pn << "+-";
01719 } else {
01720 pn << "-+";
01721 }
01722 }
01723 return pn.str();
01724 }
01725
01726 std::string qballName( const int & pid )
01727 {
01728 std::ostringstream pn;
01729 pn << "QBall^" << ((abspid(pid)/100)%1000) << "." << digit(nq3,pid);
01730 if ( pid > 0 ) {
01731 pn << "+";
01732 } else {
01733 pn << "-";
01734 }
01735 return pn.str();
01736 }
01737
01738 int checkForSpecialParticle( const std::string & s )
01739 {
01740 int chg, chg2, id;
01741 int m = 1;
01742 int len = s.length();
01743 if( s.substr(0,4) == "Dyon" ) {
01744 std::istringstream var1(s.substr(5,3).c_str());
01745 var1 >> chg;
01746 if( s.substr(len-2,1) == "+" && s.substr(len-1,1) == "-") m = 2;
01747 if( s.substr(len-2,1) == "-" && s.substr(len-1,1) == "+") m = 2;
01748 id = 4100000 + m*10000 + chg*10;
01749 if( s.substr(len-2,1) == "-" ) id = -id;
01750 return id;
01751 }
01752 if( s.substr(0,5) == "QBall" ) {
01753 int rem = len - 9;
01754 std::istringstream var2(s.substr(6,rem).c_str());
01755 var2 >> chg;
01756 std::istringstream var3(s.substr(7+rem,1).c_str());
01757 var3 >> chg2;
01758 id = 10000000 + chg*100+chg2*10;
01759 if( s.substr(len-1,1) == "-" ) id = -id;
01760 return id;
01761 }
01762 return 0;
01763 }
01764
01765 }
01766
01767
01768
01769
01770 ParticleNameMap const & getParticleNameMap()
01771 {
01772 static ParticleNameMap const & pmap = ParticleNameInit();
01773 return pmap;
01774 }
01775
01776 bool validParticleName( const int & pid )
01777 {
01778
01779 if ( isDyon(pid) ) return true;
01780 if ( isQBall(pid) ) return true;
01781
01782 static ParticleNameMap const & pmap = getParticleNameMap();
01783
01784 ParticleNameMap::idIterator const cit = pmap.find( pid );
01785 return ( cit == pmap.end() )
01786 ? false
01787 : true;
01788 }
01789
01790 bool validParticleName( const std::string & s )
01791 {
01792 static ParticleNameMap const & pmap = getParticleNameMap();
01793 ParticleNameMap::nameIterator const cit = pmap.findString( s );
01794 return ( cit == pmap.endLookupMap() )
01795 ? false
01796 : true;
01797 }
01798
01799 std::string particleName( const int & pid )
01800 {
01801
01802 if ( isDyon(pid) ) return dyonName(pid);
01803 if ( isQBall(pid) ) return qballName(pid);
01804
01805 static ParticleNameMap const & pmap = getParticleNameMap();
01806
01807 ParticleNameMap::idIterator const cit = pmap.find( pid );
01808 return ( cit == pmap.end() )
01809 ? std::string("not defined")
01810 : cit->second;
01811 }
01812
01813 int particleName( const std::string & s )
01814 {
01815 static ParticleNameMap const & pmap = getParticleNameMap();
01816 ParticleNameMap::nameIterator const cit = pmap.findString( s );
01817 return ( cit == pmap.endLookupMap() )
01818 ? checkForSpecialParticle(s)
01819 : cit->second;
01820 }
01821
01822
01823
01824
01825 void listParticleNames( std::ostream & os )
01826 {
01827 writeVersion( os );
01828 os << " HepPID Particle List" << std::endl;
01829 os << std::endl;
01830
01831
01832
01833
01834
01835
01836
01837
01838
01839 int id, i, j, q1, q2, q3, l, m, n;
01840
01841 for( id=1; id<101; ++id) {
01842 writeParticleNameLine( id, os );
01843 writeParticleNameLine( -id, os );
01844 }
01845 for( i=11; i<1000; ++i) {
01846 id = i*10;
01847 writeParticleNameLine( id, os );
01848 writeParticleNameLine( -id, os );
01849 }
01850
01851 for( n=1; n<3; ++n) {
01852 for( q1=0; q1<10; ++q1) {
01853 for( j=0; j<10; ++j) {
01854 id = 1000000*n+10*q1+j;
01855 writeParticleNameLine( id, os );
01856 writeParticleNameLine( -id, os );
01857 }
01858 }
01859 }
01860
01861 for( n=3; n<7; ++n) {
01862 for( q2=0; q2<10; ++q2) {
01863 for( q1=0; q1<10; ++q1) {
01864 for( j=0; j<10; ++j) {
01865 for( m=0; m<10; ++m) {
01866 for( l=0; l<7; ++l) {
01867 id = 1000000*n+100000*m+10000*l+100*q2+10*q1+j;
01868
01869 if( !(n == 4 && m == 1) ) {
01870 writeParticleNameLine( id, os );
01871 writeParticleNameLine( -id, os );
01872 }
01873 }
01874 }
01875 }
01876 }
01877 }
01878 }
01879
01880 for( q3=0; q3<10; ++q3) {
01881 for( q2=1; q2<10; ++q2) {
01882 for( q1=1; q1<10; ++q1) {
01883 for( j=1; j<5; ++j) {
01884 id = 1000000+1000*q3+100*q2+10*q1+j;
01885 writeParticleNameLine( id, os );
01886 if(q3 > 0 ) id = 1000000+90000+1000*q3+100*q2+10*q1+j;
01887 writeParticleNameLine( id, os );
01888 }
01889 }
01890 }
01891 }
01892
01893 for( l=0; l<9; ++l) {
01894 for( i=1; i<100; ++i) {
01895 id = 9900000+10000*l+i;
01896 writeParticleNameLine( id, os );
01897 writeParticleNameLine( -id, os );
01898 }
01899 for( q3=0; q3<10; ++q3) {
01900 for( q2=1; q2<10; ++q2) {
01901 for( q1=1; q1<10; ++q1) {
01902 for( j=0; j<10; ++j) {
01903 id = 9900000+10000*l+1000*q3+100*q2+10*q1+j;
01904 writeParticleNameLine( id, os );
01905 writeParticleNameLine( -id, os );
01906 }
01907 }
01908 }
01909 }
01910 }
01911
01912 for( i=11; i<100; ++i) {
01913 for( j=0; j<10; ++j) {
01914 id = 100*i+j;
01915 writeParticleNameLine( id, os );
01916 writeParticleNameLine( -id, os );
01917 }
01918 }
01919
01920 for( q2=1; q2<10; ++q2) {
01921 for( q1=1; q1<10; ++q1) {
01922 for( j=1; j<10; ++j) {
01923 for( m=0; m<9; ++m) {
01924 for( l=0; l<10; ++l) {
01925 id = 100000*m+10000*l+100*q2+10*q1+j;
01926 writeParticleNameLine( id, os );
01927 writeParticleNameLine( -id, os );
01928 id = 9000000+100000*m+10000*l+100*q2+10*q1+j;
01929 writeParticleNameLine( id, os );
01930 writeParticleNameLine( -id, os );
01931 }
01932 }
01933 }
01934 }
01935 }
01936
01937 for( q3=1; q3<10; ++q3) {
01938 for( q2=1; q2<10; ++q2) {
01939 for( q1=1; q1<10; ++q1) {
01940 for( j=1; j<10; ++j) {
01941 for( m=0; m<9; ++m) {
01942 id = 10000*m+1000*q3+100*q2+10*q1+j;
01943 writeParticleNameLine( id, os );
01944 writeParticleNameLine( -id, os );
01945 }
01946 }
01947 }
01948 }
01949 }
01950
01951 for( l=1; l<9; ++l ) {
01952 for ( m=1; m<9; ++m ) {
01953 for( q3=1; q3<9; ++q3) {
01954 for( q2=1; q2<9; ++q2) {
01955 for( q1=1; q1<9; ++q1) {
01956 id = 9*1000000+l*100000+m*10000+1000*q3+100*q2+10*q1+2;
01957 writeParticleNameLine( id, os );
01958 writeParticleNameLine( -id, os );
01959 }
01960 }
01961 }
01962 }
01963 }
01964
01965 for( i=1; i<3; ++i) {
01966 for( m=1; m<5; ++m) {
01967 id = 1000000000+10*m+10000*i;
01968 writeParticleNameLine( id, os );
01969 writeParticleNameLine( -id, os );
01970 }
01971 }
01972
01973 for( q3=0; q3<2; ++q3) {
01974 for( q2=0; q2<4; ++q2) {
01975 for( q1=0; q1<10; ++q1) {
01976 ++q1;
01977 id = 4110000+1000*q3+100*q2+10*q1;
01978 writeParticleNameLine( id, os );
01979 writeParticleNameLine( -id, os );
01980 id = 4120000+1000*q3+100*q2+10*q1;
01981 writeParticleNameLine( id, os );
01982 writeParticleNameLine( -id, os );
01983 }
01984 }
01985 }
01986
01987 for( i=1; i<199; ++i ) {
01988 for( m=1; m<10; ) {
01989 id = 10000000+10*m+100*i;
01990 writeParticleNameLine( id, os );
01991 writeParticleNameLine( -id, os );
01992 m += 3;
01993 }
01994 i += 11;
01995 }
01996 return;
01997 }
01998
01999 }